# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import json import base64 import io from pathlib import Path import gradio as gr import torch import spaces from PIL import Image as PILImage from fastapi import FastAPI, Body from fastapi.middleware.cors import CORSMiddleware from uno.flux.pipeline import UNOPipeline # 创建FastAPI应用 app = FastAPI() # 添加CORS中间件允许跨域请求 app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # 设置全局pipeline变量 pipeline = None def get_examples(examples_dir: str = "assets/examples") -> list: examples = Path(examples_dir) ans = [] for example in examples.iterdir(): if not example.is_dir(): continue with open(example / "config.json") as f: example_dict = json.load(f) example_list = [] example_list.append(example_dict["useage"]) # case for example_list.append(example_dict["prompt"]) # prompt for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]: if key in example_dict: example_list.append(str(example / example_dict[key])) else: example_list.append(None) example_list.append(example_dict["seed"]) ans.append(example_list) return ans def create_demo( model_type: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False, ): global pipeline pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512) pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate) # 自定义CSS样式 css = """ .gradio-container { font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif; } .main-header { text-align: center; margin-bottom: 2rem; background: linear-gradient(to right, #4776E6, #8E54E9); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700; padding: 1rem 0; } .container { border-radius: 12px; box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); padding: 20px; background: white; margin-bottom: 1.5rem; } .input-container { background: rgba(245, 247, 250, 0.7); border-radius: 10px; padding: 1rem; margin-bottom: 1rem; } .image-grid { display: grid; grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)); gap: 10px; } .generate-btn { background: linear-gradient(90deg, #4776E6, #8E54E9); border: none; color: white; padding: 10px 20px; border-radius: 50px; font-weight: 600; box-shadow: 0 4px 10px rgba(0,0,0,0.1); transition: all 0.3s ease; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 6px 15px rgba(0,0,0,0.15); } .badge-container { display: flex; justify-content: center; align-items: center; gap: 8px; flex-wrap: wrap; margin-bottom: 1rem; } .badge { display: inline-block; padding: 0.25rem 0.75rem; font-size: 0.875rem; font-weight: 500; line-height: 1.5; text-align: center; white-space: nowrap; vertical-align: middle; border-radius: 30px; color: white; background: #6c5ce7; text-decoration: none; } .output-container { background: rgba(243, 244, 246, 0.7); border-radius: 10px; padding: 1.5rem; } .slider-container label { font-weight: 600; margin-bottom: 0.5rem; color: #4a5568; } """ badges_text = r"""
GitHub Stars Project Page arXiv
""".strip() with gr.Blocks(css=css) as demo: gr.Markdown("#
UNO-FLUX Image Generator
") gr.Markdown(badges_text) with gr.Row(): with gr.Column(scale=3): with gr.Group(elem_classes="container"): prompt = gr.Textbox( label="Prompt", placeholder="Describe the image you want to generate...", value="handsome woman in the city", elem_classes="input-container" ) gr.Markdown("### Reference Images") with gr.Row(elem_classes="image-grid"): image_prompt1 = gr.Image(label="Ref Img 1", visible=True, interactive=True, type="pil") image_prompt2 = gr.Image(label="Ref Img 2", visible=True, interactive=True, type="pil") image_prompt3 = gr.Image(label="Ref Img 3", visible=True, interactive=True, type="pil") image_prompt4 = gr.Image(label="Ref Img 4", visible=True, interactive=True, type="pil") with gr.Row(): with gr.Column(scale=2): with gr.Group(elem_classes="slider-container"): width = gr.Slider(512, 2048, 512, step=16, label="Generation Width") height = gr.Slider(512, 2048, 512, step=16, label="Generation Height") with gr.Column(scale=1): gr.Markdown("
📌 The model was trained on 512x512 resolution.
Sizes closer to 512 are more stable, higher sizes give better visual effects but are less stable.
") with gr.Accordion("Advanced Options", open=False): with gr.Row(): with gr.Column(): num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps") with gr.Column(): guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True) with gr.Column(): seed = gr.Number(-1, label="Seed (-1 for random)") generate_btn = gr.Button("Generate", elem_classes="generate-btn") with gr.Column(scale=2): with gr.Group(elem_classes="output-container"): gr.Markdown("### Generated Result") output_image = gr.Image(label="Generated Image") download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False) inputs = [ prompt, width, height, guidance, num_steps, seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4 ] generate_btn.click( fn=pipeline.gradio_generate, inputs=inputs, outputs=[output_image, download_btn], ) example_text = gr.Text("", visible=False, label="Case For:") examples = get_examples("./assets/examples") with gr.Group(elem_classes="container"): gr.Markdown("###
Examples
") gr.Examples( examples=examples, inputs=[ example_text, prompt, image_prompt1, image_prompt2, image_prompt3, image_prompt4, seed, output_image ], ) # 添加API文档 with gr.Accordion("API Documentation", open=False): gr.Markdown(""" ### API Usage You can use the following endpoint to generate images programmatically: **Endpoint:** `/api/generate` **Method:** POST **Request Body:** ```json { "prompt": "your text prompt", "image_refs": ["base64_encoded_image1", "base64_encoded_image2", ...], "width": 512, "height": 512, "guidance": 4.0, "num_steps": 25, "seed": -1 } ``` **Response:** ```json { "image": "base64_encoded_generated_image" } ``` **Example JavaScript Usage:** ```javascript async function generateImage() { const response = await fetch('/api/generate', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ prompt: "handsome woman in the city", image_refs: [], width: 512, height: 512 }), }); const data = await response.json(); const imgElement = document.getElementById('generatedImage'); imgElement.src = `data:image/png;base64,${data.image}`; } ``` """) return demo # 创建API端点 @app.post("/api/generate") async def generate_image( prompt: str = Body(...), width: int = Body(512), height: int = Body(512), guidance: float = Body(4.0), num_steps: int = Body(25), seed: int = Body(-1), image_refs: list = Body([]) ): global pipeline # 处理参考图像 ref_images = [] for i in range(min(4, len(image_refs))): if image_refs[i]: try: # 解码base64图像 if isinstance(image_refs[i], str) and "base64" in image_refs[i]: # 移除数据URL前缀 if "," in image_refs[i]: img_data = image_refs[i].split(",")[1] else: img_data = image_refs[i] img_data = base64.b64decode(img_data) ref_img = PILImage.open(io.BytesIO(img_data)) ref_images.append(ref_img) else: ref_images.append(None) except: ref_images.append(None) else: ref_images.append(None) # 填充至4张图像 while len(ref_images) < 4: ref_images.append(None) # 调用模型生成图像 result_image, _ = pipeline.gradio_generate( prompt, width, height, guidance, num_steps, seed, ref_images[0], ref_images[1], ref_images[2], ref_images[3] ) # 将结果图像编码为base64 buffered = io.BytesIO() result_image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return {"image": img_str} if __name__ == "__main__": from typing import Literal import uvicorn from transformers import HfArgumentParser @dataclasses.dataclass class AppArgs: name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev" device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu" offload: bool = dataclasses.field( default=False, metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."} ) port: int = 7860 host: str = "0.0.0.0" parser = HfArgumentParser([AppArgs]) args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs] args = args_tuple[0] # 创建Gradio demo demo = create_demo(args.name, args.device, args.offload) # 挂载Gradio接口到FastAPI应用 app = gr.mount_gradio_app(app, demo, path="/") # 使用uvicorn启动FastAPI应用 uvicorn.run(app, host=args.host, port=args.port)