Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
from torchvision.transforms import GaussianBlur | |
class BasePipeline(torch.nn.Module): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64): | |
super().__init__() | |
self.device = device | |
self.torch_dtype = torch_dtype | |
self.height_division_factor = height_division_factor | |
self.width_division_factor = width_division_factor | |
self.cpu_offload = False | |
self.model_names = [] | |
def check_resize_height_width(self, height, width): | |
if height % self.height_division_factor != 0: | |
height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor | |
print(f"The height cannot be evenly divided by {self.height_division_factor}. We round it up to {height}.") | |
if width % self.width_division_factor != 0: | |
width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor | |
print(f"The width cannot be evenly divided by {self.width_division_factor}. We round it up to {width}.") | |
return height, width | |
def preprocess_image(self, image): | |
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) | |
return image | |
def preprocess_images(self, images): | |
return [self.preprocess_image(image) for image in images] | |
def vae_output_to_image(self, vae_output): | |
image = vae_output[0].cpu().float().permute(1, 2, 0).numpy() | |
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) | |
return image | |
def vae_output_to_video(self, vae_output): | |
video = vae_output.cpu().permute(1, 2, 0).numpy() | |
video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video] | |
return video | |
def merge_latents(self, value, latents, masks, scales, blur_kernel_size=33, blur_sigma=10.0): | |
if len(latents) > 0: | |
blur = GaussianBlur(kernel_size=blur_kernel_size, sigma=blur_sigma) | |
height, width = value.shape[-2:] | |
weight = torch.ones_like(value) | |
for latent, mask, scale in zip(latents, masks, scales): | |
mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0 | |
mask = mask.repeat(1, latent.shape[1], 1, 1).to(dtype=latent.dtype, device=latent.device) | |
mask = blur(mask) | |
value += latent * mask * scale | |
weight += mask * scale | |
value /= weight | |
return value | |
def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback, special_kwargs=None, special_local_kwargs_list=None): | |
if special_kwargs is None: | |
noise_pred_global = inference_callback(prompt_emb_global) | |
else: | |
noise_pred_global = inference_callback(prompt_emb_global, special_kwargs) | |
if special_local_kwargs_list is None: | |
noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals] | |
else: | |
noise_pred_locals = [inference_callback(prompt_emb_local, special_kwargs) for prompt_emb_local, special_kwargs in zip(prompt_emb_locals, special_local_kwargs_list)] | |
noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales) | |
return noise_pred | |
def extend_prompt(self, prompt, local_prompts, masks, mask_scales): | |
local_prompts = local_prompts or [] | |
masks = masks or [] | |
mask_scales = mask_scales or [] | |
extended_prompt_dict = self.prompter.extend_prompt(prompt) | |
prompt = extended_prompt_dict.get("prompt", prompt) | |
local_prompts += extended_prompt_dict.get("prompts", []) | |
masks += extended_prompt_dict.get("masks", []) | |
mask_scales += [100.0] * len(extended_prompt_dict.get("masks", [])) | |
return prompt, local_prompts, masks, mask_scales | |
def enable_cpu_offload(self): | |
self.cpu_offload = True | |
def load_models_to_device(self, loadmodel_names=[]): | |
# only load models to device if cpu_offload is enabled | |
if not self.cpu_offload: | |
return | |
# offload the unneeded models to cpu | |
for model_name in self.model_names: | |
if model_name not in loadmodel_names: | |
model = getattr(self, model_name) | |
if model is not None: | |
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: | |
for module in model.modules(): | |
if hasattr(module, "offload"): | |
module.offload() | |
else: | |
model.cpu() | |
# load the needed models to device | |
for model_name in loadmodel_names: | |
model = getattr(self, model_name) | |
if model is not None: | |
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: | |
for module in model.modules(): | |
if hasattr(module, "onload"): | |
module.onload() | |
else: | |
model.to(self.device) | |
# fresh the cuda cache | |
torch.cuda.empty_cache() | |
def generate_noise(self, shape, seed=None, device="cpu", dtype=torch.float16): | |
generator = None if seed is None else torch.Generator(device).manual_seed(seed) | |
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
return noise | |