import torch import numpy as np from PIL import Image from torchvision.transforms import GaussianBlur class BasePipeline(torch.nn.Module): def __init__(self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64): super().__init__() self.device = device self.torch_dtype = torch_dtype self.height_division_factor = height_division_factor self.width_division_factor = width_division_factor self.cpu_offload = False self.model_names = [] def check_resize_height_width(self, height, width): if height % self.height_division_factor != 0: height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor print(f"The height cannot be evenly divided by {self.height_division_factor}. We round it up to {height}.") if width % self.width_division_factor != 0: width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor print(f"The width cannot be evenly divided by {self.width_division_factor}. We round it up to {width}.") return height, width def preprocess_image(self, image): image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) return image def preprocess_images(self, images): return [self.preprocess_image(image) for image in images] def vae_output_to_image(self, vae_output): image = vae_output[0].cpu().float().permute(1, 2, 0).numpy() image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) return image def vae_output_to_video(self, vae_output): video = vae_output.cpu().permute(1, 2, 0).numpy() video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video] return video def merge_latents(self, value, latents, masks, scales, blur_kernel_size=33, blur_sigma=10.0): if len(latents) > 0: blur = GaussianBlur(kernel_size=blur_kernel_size, sigma=blur_sigma) height, width = value.shape[-2:] weight = torch.ones_like(value) for latent, mask, scale in zip(latents, masks, scales): mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0 mask = mask.repeat(1, latent.shape[1], 1, 1).to(dtype=latent.dtype, device=latent.device) mask = blur(mask) value += latent * mask * scale weight += mask * scale value /= weight return value def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback, special_kwargs=None, special_local_kwargs_list=None): if special_kwargs is None: noise_pred_global = inference_callback(prompt_emb_global) else: noise_pred_global = inference_callback(prompt_emb_global, special_kwargs) if special_local_kwargs_list is None: noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals] else: noise_pred_locals = [inference_callback(prompt_emb_local, special_kwargs) for prompt_emb_local, special_kwargs in zip(prompt_emb_locals, special_local_kwargs_list)] noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales) return noise_pred def extend_prompt(self, prompt, local_prompts, masks, mask_scales): local_prompts = local_prompts or [] masks = masks or [] mask_scales = mask_scales or [] extended_prompt_dict = self.prompter.extend_prompt(prompt) prompt = extended_prompt_dict.get("prompt", prompt) local_prompts += extended_prompt_dict.get("prompts", []) masks += extended_prompt_dict.get("masks", []) mask_scales += [100.0] * len(extended_prompt_dict.get("masks", [])) return prompt, local_prompts, masks, mask_scales def enable_cpu_offload(self): self.cpu_offload = True def load_models_to_device(self, loadmodel_names=[]): # only load models to device if cpu_offload is enabled if not self.cpu_offload: return # offload the unneeded models to cpu for model_name in self.model_names: if model_name not in loadmodel_names: model = getattr(self, model_name) if model is not None: if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: for module in model.modules(): if hasattr(module, "offload"): module.offload() else: model.cpu() # load the needed models to device for model_name in loadmodel_names: model = getattr(self, model_name) if model is not None: if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: for module in model.modules(): if hasattr(module, "onload"): module.onload() else: model.to(self.device) # fresh the cuda cache torch.cuda.empty_cache() def generate_noise(self, shape, seed=None, device="cpu", dtype=torch.float16): generator = None if seed is None else torch.Generator(device).manual_seed(seed) noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) return noise