Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,770 Bytes
282b272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import torch
import numpy as np
from PIL import Image
from torchvision.transforms import GaussianBlur
class BasePipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64):
super().__init__()
self.device = device
self.torch_dtype = torch_dtype
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
self.cpu_offload = False
self.model_names = []
def check_resize_height_width(self, height, width):
if height % self.height_division_factor != 0:
height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor
print(f"The height cannot be evenly divided by {self.height_division_factor}. We round it up to {height}.")
if width % self.width_division_factor != 0:
width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor
print(f"The width cannot be evenly divided by {self.width_division_factor}. We round it up to {width}.")
return height, width
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def preprocess_images(self, images):
return [self.preprocess_image(image) for image in images]
def vae_output_to_image(self, vae_output):
image = vae_output[0].cpu().float().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def vae_output_to_video(self, vae_output):
video = vae_output.cpu().permute(1, 2, 0).numpy()
video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video]
return video
def merge_latents(self, value, latents, masks, scales, blur_kernel_size=33, blur_sigma=10.0):
if len(latents) > 0:
blur = GaussianBlur(kernel_size=blur_kernel_size, sigma=blur_sigma)
height, width = value.shape[-2:]
weight = torch.ones_like(value)
for latent, mask, scale in zip(latents, masks, scales):
mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0
mask = mask.repeat(1, latent.shape[1], 1, 1).to(dtype=latent.dtype, device=latent.device)
mask = blur(mask)
value += latent * mask * scale
weight += mask * scale
value /= weight
return value
def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback, special_kwargs=None, special_local_kwargs_list=None):
if special_kwargs is None:
noise_pred_global = inference_callback(prompt_emb_global)
else:
noise_pred_global = inference_callback(prompt_emb_global, special_kwargs)
if special_local_kwargs_list is None:
noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals]
else:
noise_pred_locals = [inference_callback(prompt_emb_local, special_kwargs) for prompt_emb_local, special_kwargs in zip(prompt_emb_locals, special_local_kwargs_list)]
noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales)
return noise_pred
def extend_prompt(self, prompt, local_prompts, masks, mask_scales):
local_prompts = local_prompts or []
masks = masks or []
mask_scales = mask_scales or []
extended_prompt_dict = self.prompter.extend_prompt(prompt)
prompt = extended_prompt_dict.get("prompt", prompt)
local_prompts += extended_prompt_dict.get("prompts", [])
masks += extended_prompt_dict.get("masks", [])
mask_scales += [100.0] * len(extended_prompt_dict.get("masks", []))
return prompt, local_prompts, masks, mask_scales
def enable_cpu_offload(self):
self.cpu_offload = True
def load_models_to_device(self, loadmodel_names=[]):
# only load models to device if cpu_offload is enabled
if not self.cpu_offload:
return
# offload the unneeded models to cpu
for model_name in self.model_names:
if model_name not in loadmodel_names:
model = getattr(self, model_name)
if model is not None:
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
for module in model.modules():
if hasattr(module, "offload"):
module.offload()
else:
model.cpu()
# load the needed models to device
for model_name in loadmodel_names:
model = getattr(self, model_name)
if model is not None:
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled:
for module in model.modules():
if hasattr(module, "onload"):
module.onload()
else:
model.to(self.device)
# fresh the cuda cache
torch.cuda.empty_cache()
def generate_noise(self, shape, seed=None, device="cpu", dtype=torch.float16):
generator = None if seed is None else torch.Generator(device).manual_seed(seed)
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
return noise
|