Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def fp16_clamp(x): | |
if x.dtype == torch.float16 and torch.isinf(x).any(): | |
clamp = torch.finfo(x.dtype).max - 1000 | |
x = torch.clamp(x, min=-clamp, max=clamp) | |
return x | |
class GELU(nn.Module): | |
def forward(self, x): | |
return 0.5 * x * (1.0 + torch.tanh( | |
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) | |
class T5LayerNorm(nn.Module): | |
def __init__(self, dim, eps=1e-6): | |
super(T5LayerNorm, self).__init__() | |
self.dim = dim | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + | |
self.eps) | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
x = x.type_as(self.weight) | |
return self.weight * x | |
class T5Attention(nn.Module): | |
def __init__(self, dim, dim_attn, num_heads, dropout=0.1): | |
assert dim_attn % num_heads == 0 | |
super(T5Attention, self).__init__() | |
self.dim = dim | |
self.dim_attn = dim_attn | |
self.num_heads = num_heads | |
self.head_dim = dim_attn // num_heads | |
# layers | |
self.q = nn.Linear(dim, dim_attn, bias=False) | |
self.k = nn.Linear(dim, dim_attn, bias=False) | |
self.v = nn.Linear(dim, dim_attn, bias=False) | |
self.o = nn.Linear(dim_attn, dim, bias=False) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x, context=None, mask=None, pos_bias=None): | |
""" | |
x: [B, L1, C]. | |
context: [B, L2, C] or None. | |
mask: [B, L2] or [B, L1, L2] or None. | |
""" | |
# check inputs | |
context = x if context is None else context | |
b, n, c = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.q(x).view(b, -1, n, c) | |
k = self.k(context).view(b, -1, n, c) | |
v = self.v(context).view(b, -1, n, c) | |
# attention bias | |
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1)) | |
if pos_bias is not None: | |
attn_bias += pos_bias | |
if mask is not None: | |
assert mask.ndim in [2, 3] | |
mask = mask.view(b, 1, 1, | |
-1) if mask.ndim == 2 else mask.unsqueeze(1) | |
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min) | |
# compute attention (T5 does not use scaling) | |
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias | |
attn = F.softmax(attn.float(), dim=-1).type_as(attn) | |
x = torch.einsum('bnij,bjnc->binc', attn, v) | |
# output | |
x = x.reshape(b, -1, n * c) | |
x = self.o(x) | |
x = self.dropout(x) | |
return x | |
class T5FeedForward(nn.Module): | |
def __init__(self, dim, dim_ffn, dropout=0.1): | |
super(T5FeedForward, self).__init__() | |
self.dim = dim | |
self.dim_ffn = dim_ffn | |
# layers | |
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU()) | |
self.fc1 = nn.Linear(dim, dim_ffn, bias=False) | |
self.fc2 = nn.Linear(dim_ffn, dim, bias=False) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.fc1(x) * self.gate(x) | |
x = self.dropout(x) | |
x = self.fc2(x) | |
x = self.dropout(x) | |
return x | |
class T5SelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
dim_attn, | |
dim_ffn, | |
num_heads, | |
num_buckets, | |
shared_pos=True, | |
dropout=0.1): | |
super(T5SelfAttention, self).__init__() | |
self.dim = dim | |
self.dim_attn = dim_attn | |
self.dim_ffn = dim_ffn | |
self.num_heads = num_heads | |
self.num_buckets = num_buckets | |
self.shared_pos = shared_pos | |
# layers | |
self.norm1 = T5LayerNorm(dim) | |
self.attn = T5Attention(dim, dim_attn, num_heads, dropout) | |
self.norm2 = T5LayerNorm(dim) | |
self.ffn = T5FeedForward(dim, dim_ffn, dropout) | |
self.pos_embedding = None if shared_pos else T5RelativeEmbedding( | |
num_buckets, num_heads, bidirectional=True) | |
def forward(self, x, mask=None, pos_bias=None): | |
e = pos_bias if self.shared_pos else self.pos_embedding( | |
x.size(1), x.size(1)) | |
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e)) | |
x = fp16_clamp(x + self.ffn(self.norm2(x))) | |
return x | |
class T5RelativeEmbedding(nn.Module): | |
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128): | |
super(T5RelativeEmbedding, self).__init__() | |
self.num_buckets = num_buckets | |
self.num_heads = num_heads | |
self.bidirectional = bidirectional | |
self.max_dist = max_dist | |
# layers | |
self.embedding = nn.Embedding(num_buckets, num_heads) | |
def forward(self, lq, lk): | |
device = self.embedding.weight.device | |
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \ | |
# torch.arange(lq).unsqueeze(1).to(device) | |
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \ | |
torch.arange(lq, device=device).unsqueeze(1) | |
rel_pos = self._relative_position_bucket(rel_pos) | |
rel_pos_embeds = self.embedding(rel_pos) | |
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze( | |
0) # [1, N, Lq, Lk] | |
return rel_pos_embeds.contiguous() | |
def _relative_position_bucket(self, rel_pos): | |
# preprocess | |
if self.bidirectional: | |
num_buckets = self.num_buckets // 2 | |
rel_buckets = (rel_pos > 0).long() * num_buckets | |
rel_pos = torch.abs(rel_pos) | |
else: | |
num_buckets = self.num_buckets | |
rel_buckets = 0 | |
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos)) | |
# embeddings for small and large positions | |
max_exact = num_buckets // 2 | |
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / | |
math.log(self.max_dist / max_exact) * | |
(num_buckets - max_exact)).long() | |
rel_pos_large = torch.min( | |
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1)) | |
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large) | |
return rel_buckets | |
def init_weights(m): | |
if isinstance(m, T5LayerNorm): | |
nn.init.ones_(m.weight) | |
elif isinstance(m, T5FeedForward): | |
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5) | |
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5) | |
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5) | |
elif isinstance(m, T5Attention): | |
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5) | |
nn.init.normal_(m.k.weight, std=m.dim**-0.5) | |
nn.init.normal_(m.v.weight, std=m.dim**-0.5) | |
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5) | |
elif isinstance(m, T5RelativeEmbedding): | |
nn.init.normal_( | |
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5) | |
class WanTextEncoder(torch.nn.Module): | |
def __init__(self, | |
vocab=256384, | |
dim=4096, | |
dim_attn=4096, | |
dim_ffn=10240, | |
num_heads=64, | |
num_layers=24, | |
num_buckets=32, | |
shared_pos=False, | |
dropout=0.1): | |
super(WanTextEncoder, self).__init__() | |
self.dim = dim | |
self.dim_attn = dim_attn | |
self.dim_ffn = dim_ffn | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.num_buckets = num_buckets | |
self.shared_pos = shared_pos | |
# layers | |
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \ | |
else nn.Embedding(vocab, dim) | |
self.pos_embedding = T5RelativeEmbedding( | |
num_buckets, num_heads, bidirectional=True) if shared_pos else None | |
self.dropout = nn.Dropout(dropout) | |
self.blocks = nn.ModuleList([ | |
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, | |
shared_pos, dropout) for _ in range(num_layers) | |
]) | |
self.norm = T5LayerNorm(dim) | |
# initialize weights | |
self.apply(init_weights) | |
def forward(self, ids, mask=None): | |
x = self.token_embedding(ids) | |
x = self.dropout(x) | |
e = self.pos_embedding(x.size(1), | |
x.size(1)) if self.shared_pos else None | |
for block in self.blocks: | |
x = block(x, mask, pos_bias=e) | |
x = self.norm(x) | |
x = self.dropout(x) | |
return x | |
def state_dict_converter(): | |
return WanTextEncoderStateDictConverter() | |
class WanTextEncoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
return state_dict | |
def from_civitai(self, state_dict): | |
return state_dict | |