Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,131 Bytes
3570591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def fp16_clamp(x):
if x.dtype == torch.float16 and torch.isinf(x).any():
clamp = torch.finfo(x.dtype).max - 1000
x = torch.clamp(x, min=-clamp, max=clamp)
return x
class GELU(nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
class T5LayerNorm(nn.Module):
def __init__(self, dim, eps=1e-6):
super(T5LayerNorm, self).__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
self.eps)
if self.weight.dtype in [torch.float16, torch.bfloat16]:
x = x.type_as(self.weight)
return self.weight * x
class T5Attention(nn.Module):
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
assert dim_attn % num_heads == 0
super(T5Attention, self).__init__()
self.dim = dim
self.dim_attn = dim_attn
self.num_heads = num_heads
self.head_dim = dim_attn // num_heads
# layers
self.q = nn.Linear(dim, dim_attn, bias=False)
self.k = nn.Linear(dim, dim_attn, bias=False)
self.v = nn.Linear(dim, dim_attn, bias=False)
self.o = nn.Linear(dim_attn, dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x, context=None, mask=None, pos_bias=None):
"""
x: [B, L1, C].
context: [B, L2, C] or None.
mask: [B, L2] or [B, L1, L2] or None.
"""
# check inputs
context = x if context is None else context
b, n, c = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x).view(b, -1, n, c)
k = self.k(context).view(b, -1, n, c)
v = self.v(context).view(b, -1, n, c)
# attention bias
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
if pos_bias is not None:
attn_bias += pos_bias
if mask is not None:
assert mask.ndim in [2, 3]
mask = mask.view(b, 1, 1,
-1) if mask.ndim == 2 else mask.unsqueeze(1)
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
# compute attention (T5 does not use scaling)
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
x = torch.einsum('bnij,bjnc->binc', attn, v)
# output
x = x.reshape(b, -1, n * c)
x = self.o(x)
x = self.dropout(x)
return x
class T5FeedForward(nn.Module):
def __init__(self, dim, dim_ffn, dropout=0.1):
super(T5FeedForward, self).__init__()
self.dim = dim
self.dim_ffn = dim_ffn
# layers
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x) * self.gate(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class T5SelfAttention(nn.Module):
def __init__(self,
dim,
dim_attn,
dim_ffn,
num_heads,
num_buckets,
shared_pos=True,
dropout=0.1):
super(T5SelfAttention, self).__init__()
self.dim = dim
self.dim_attn = dim_attn
self.dim_ffn = dim_ffn
self.num_heads = num_heads
self.num_buckets = num_buckets
self.shared_pos = shared_pos
# layers
self.norm1 = T5LayerNorm(dim)
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
self.norm2 = T5LayerNorm(dim)
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
num_buckets, num_heads, bidirectional=True)
def forward(self, x, mask=None, pos_bias=None):
e = pos_bias if self.shared_pos else self.pos_embedding(
x.size(1), x.size(1))
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
x = fp16_clamp(x + self.ffn(self.norm2(x)))
return x
class T5RelativeEmbedding(nn.Module):
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
super(T5RelativeEmbedding, self).__init__()
self.num_buckets = num_buckets
self.num_heads = num_heads
self.bidirectional = bidirectional
self.max_dist = max_dist
# layers
self.embedding = nn.Embedding(num_buckets, num_heads)
def forward(self, lq, lk):
device = self.embedding.weight.device
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
# torch.arange(lq).unsqueeze(1).to(device)
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
torch.arange(lq, device=device).unsqueeze(1)
rel_pos = self._relative_position_bucket(rel_pos)
rel_pos_embeds = self.embedding(rel_pos)
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
0) # [1, N, Lq, Lk]
return rel_pos_embeds.contiguous()
def _relative_position_bucket(self, rel_pos):
# preprocess
if self.bidirectional:
num_buckets = self.num_buckets // 2
rel_buckets = (rel_pos > 0).long() * num_buckets
rel_pos = torch.abs(rel_pos)
else:
num_buckets = self.num_buckets
rel_buckets = 0
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
# embeddings for small and large positions
max_exact = num_buckets // 2
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
math.log(self.max_dist / max_exact) *
(num_buckets - max_exact)).long()
rel_pos_large = torch.min(
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
return rel_buckets
def init_weights(m):
if isinstance(m, T5LayerNorm):
nn.init.ones_(m.weight)
elif isinstance(m, T5FeedForward):
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
elif isinstance(m, T5Attention):
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
elif isinstance(m, T5RelativeEmbedding):
nn.init.normal_(
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
class WanTextEncoder(torch.nn.Module):
def __init__(self,
vocab=256384,
dim=4096,
dim_attn=4096,
dim_ffn=10240,
num_heads=64,
num_layers=24,
num_buckets=32,
shared_pos=False,
dropout=0.1):
super(WanTextEncoder, self).__init__()
self.dim = dim
self.dim_attn = dim_attn
self.dim_ffn = dim_ffn
self.num_heads = num_heads
self.num_layers = num_layers
self.num_buckets = num_buckets
self.shared_pos = shared_pos
# layers
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
else nn.Embedding(vocab, dim)
self.pos_embedding = T5RelativeEmbedding(
num_buckets, num_heads, bidirectional=True) if shared_pos else None
self.dropout = nn.Dropout(dropout)
self.blocks = nn.ModuleList([
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
shared_pos, dropout) for _ in range(num_layers)
])
self.norm = T5LayerNorm(dim)
# initialize weights
self.apply(init_weights)
def forward(self, ids, mask=None):
x = self.token_embedding(ids)
x = self.dropout(x)
e = self.pos_embedding(x.size(1),
x.size(1)) if self.shared_pos else None
for block in self.blocks:
x = block(x, mask, pos_bias=e)
x = self.norm(x)
x = self.dropout(x)
return x
@staticmethod
def state_dict_converter():
return WanTextEncoderStateDictConverter()
class WanTextEncoderStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
return state_dict
def from_civitai(self, state_dict):
return state_dict
|