File size: 9,131 Bytes
3570591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


class GELU(nn.Module):

    def forward(self, x):
        return 0.5 * x * (1.0 + torch.tanh(
            math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))


class T5LayerNorm(nn.Module):

    def __init__(self, dim, eps=1e-6):
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
                            self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):

    def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

        # layers
        self.q = nn.Linear(dim, dim_attn, bias=False)
        self.k = nn.Linear(dim, dim_attn, bias=False)
        self.v = nn.Linear(dim, dim_attn, bias=False)
        self.o = nn.Linear(dim_attn, dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1,
                             -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
        x = torch.einsum('bnij,bjnc->binc', attn, v)

        # output
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):

    def __init__(self, dim, dim_ffn, dropout=0.1):
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

        # layers
        self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
        self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
        self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x) * self.gate(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 dim_attn,
                 dim_ffn,
                 num_heads,
                 num_buckets,
                 shared_pos=True,
                 dropout=0.1):
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=True)

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(
            x.size(1), x.size(1))
        x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
        x = fp16_clamp(x + self.ffn(self.norm2(x)))
        return x


class T5RelativeEmbedding(nn.Module):

    def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
        self.embedding = nn.Embedding(num_buckets, num_heads)

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
            torch.arange(lq, device=device).unsqueeze(1)
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
            0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
                                     math.log(self.max_dist / max_exact) *
                                     (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(
            rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets

def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
    elif isinstance(m, T5RelativeEmbedding):
        nn.init.normal_(
            m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)


class WanTextEncoder(torch.nn.Module):

    def __init__(self,
                 vocab=256384,
                 dim=4096,
                 dim_attn=4096,
                 dim_ffn=10240,
                 num_heads=64,
                 num_layers=24,
                 num_buckets=32,
                 shared_pos=False,
                 dropout=0.1):
        super(WanTextEncoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
            else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(
            num_buckets, num_heads, bidirectional=True) if shared_pos else None
        self.dropout = nn.Dropout(dropout)
        self.blocks = nn.ModuleList([
            T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
                            shared_pos, dropout) for _ in range(num_layers)
        ])
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None):
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1),
                               x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x
    
    @staticmethod
    def state_dict_converter():
        return WanTextEncoderStateDictConverter()
    
    
class WanTextEncoderStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        return state_dict
    
    def from_civitai(self, state_dict):
        return state_dict