import math import torch import torch.nn as nn import torch.nn.functional as F def fp16_clamp(x): if x.dtype == torch.float16 and torch.isinf(x).any(): clamp = torch.finfo(x.dtype).max - 1000 x = torch.clamp(x, min=-clamp, max=clamp) return x class GELU(nn.Module): def forward(self, x): return 0.5 * x * (1.0 + torch.tanh( math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) class T5LayerNorm(nn.Module): def __init__(self, dim, eps=1e-6): super(T5LayerNorm, self).__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps) if self.weight.dtype in [torch.float16, torch.bfloat16]: x = x.type_as(self.weight) return self.weight * x class T5Attention(nn.Module): def __init__(self, dim, dim_attn, num_heads, dropout=0.1): assert dim_attn % num_heads == 0 super(T5Attention, self).__init__() self.dim = dim self.dim_attn = dim_attn self.num_heads = num_heads self.head_dim = dim_attn // num_heads # layers self.q = nn.Linear(dim, dim_attn, bias=False) self.k = nn.Linear(dim, dim_attn, bias=False) self.v = nn.Linear(dim, dim_attn, bias=False) self.o = nn.Linear(dim_attn, dim, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, x, context=None, mask=None, pos_bias=None): """ x: [B, L1, C]. context: [B, L2, C] or None. mask: [B, L2] or [B, L1, L2] or None. """ # check inputs context = x if context is None else context b, n, c = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.q(x).view(b, -1, n, c) k = self.k(context).view(b, -1, n, c) v = self.v(context).view(b, -1, n, c) # attention bias attn_bias = x.new_zeros(b, n, q.size(1), k.size(1)) if pos_bias is not None: attn_bias += pos_bias if mask is not None: assert mask.ndim in [2, 3] mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1) attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min) # compute attention (T5 does not use scaling) attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias attn = F.softmax(attn.float(), dim=-1).type_as(attn) x = torch.einsum('bnij,bjnc->binc', attn, v) # output x = x.reshape(b, -1, n * c) x = self.o(x) x = self.dropout(x) return x class T5FeedForward(nn.Module): def __init__(self, dim, dim_ffn, dropout=0.1): super(T5FeedForward, self).__init__() self.dim = dim self.dim_ffn = dim_ffn # layers self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU()) self.fc1 = nn.Linear(dim, dim_ffn, bias=False) self.fc2 = nn.Linear(dim_ffn, dim, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.fc1(x) * self.gate(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class T5SelfAttention(nn.Module): def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1): super(T5SelfAttention, self).__init__() self.dim = dim self.dim_attn = dim_attn self.dim_ffn = dim_ffn self.num_heads = num_heads self.num_buckets = num_buckets self.shared_pos = shared_pos # layers self.norm1 = T5LayerNorm(dim) self.attn = T5Attention(dim, dim_attn, num_heads, dropout) self.norm2 = T5LayerNorm(dim) self.ffn = T5FeedForward(dim, dim_ffn, dropout) self.pos_embedding = None if shared_pos else T5RelativeEmbedding( num_buckets, num_heads, bidirectional=True) def forward(self, x, mask=None, pos_bias=None): e = pos_bias if self.shared_pos else self.pos_embedding( x.size(1), x.size(1)) x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e)) x = fp16_clamp(x + self.ffn(self.norm2(x))) return x class T5RelativeEmbedding(nn.Module): def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128): super(T5RelativeEmbedding, self).__init__() self.num_buckets = num_buckets self.num_heads = num_heads self.bidirectional = bidirectional self.max_dist = max_dist # layers self.embedding = nn.Embedding(num_buckets, num_heads) def forward(self, lq, lk): device = self.embedding.weight.device # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \ # torch.arange(lq).unsqueeze(1).to(device) rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \ torch.arange(lq, device=device).unsqueeze(1) rel_pos = self._relative_position_bucket(rel_pos) rel_pos_embeds = self.embedding(rel_pos) rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze( 0) # [1, N, Lq, Lk] return rel_pos_embeds.contiguous() def _relative_position_bucket(self, rel_pos): # preprocess if self.bidirectional: num_buckets = self.num_buckets // 2 rel_buckets = (rel_pos > 0).long() * num_buckets rel_pos = torch.abs(rel_pos) else: num_buckets = self.num_buckets rel_buckets = 0 rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos)) # embeddings for small and large positions max_exact = num_buckets // 2 rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long() rel_pos_large = torch.min( rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1)) rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large) return rel_buckets def init_weights(m): if isinstance(m, T5LayerNorm): nn.init.ones_(m.weight) elif isinstance(m, T5FeedForward): nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5) nn.init.normal_(m.fc1.weight, std=m.dim**-0.5) nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5) elif isinstance(m, T5Attention): nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5) nn.init.normal_(m.k.weight, std=m.dim**-0.5) nn.init.normal_(m.v.weight, std=m.dim**-0.5) nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5) elif isinstance(m, T5RelativeEmbedding): nn.init.normal_( m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5) class WanTextEncoder(torch.nn.Module): def __init__(self, vocab=256384, dim=4096, dim_attn=4096, dim_ffn=10240, num_heads=64, num_layers=24, num_buckets=32, shared_pos=False, dropout=0.1): super(WanTextEncoder, self).__init__() self.dim = dim self.dim_attn = dim_attn self.dim_ffn = dim_ffn self.num_heads = num_heads self.num_layers = num_layers self.num_buckets = num_buckets self.shared_pos = shared_pos # layers self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \ else nn.Embedding(vocab, dim) self.pos_embedding = T5RelativeEmbedding( num_buckets, num_heads, bidirectional=True) if shared_pos else None self.dropout = nn.Dropout(dropout) self.blocks = nn.ModuleList([ T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers) ]) self.norm = T5LayerNorm(dim) # initialize weights self.apply(init_weights) def forward(self, ids, mask=None): x = self.token_embedding(ids) x = self.dropout(x) e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None for block in self.blocks: x = block(x, mask, pos_bias=e) x = self.norm(x) x = self.dropout(x) return x @staticmethod def state_dict_converter(): return WanTextEncoderStateDictConverter() class WanTextEncoderStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): return state_dict def from_civitai(self, state_dict): return state_dict