File size: 7,524 Bytes
d43fa94
41928ca
 
 
48bf8a4
3ecadea
41928ca
79ccf40
 
d43fa94
be4cb79
 
 
 
 
8c6c12f
6d76df7
be4cb79
3ecadea
8c6c12f
6d76df7
 
196f1dd
48bf8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d76df7
 
 
 
 
609a610
6d76df7
 
 
61d529e
8c6c12f
 
b94b847
 
e519624
41928ca
be4cb79
41928ca
be4cb79
41928ca
 
 
 
 
be4cb79
41928ca
be4cb79
41928ca
 
 
 
 
be4cb79
41928ca
be4cb79
41928ca
be4cb79
41928ca
 
be4cb79
41928ca
be4cb79
 
 
6451d60
 
79ccf40
6451d60
b94b847
41928ca
6451d60
 
41928ca
6451d60
79ccf40
41928ca
be4cb79
41928ca
 
 
 
 
79ccf40
41928ca
b94b847
be4cb79
79ccf40
b94b847
 
609a610
b94b847
 
 
 
41928ca
 
 
be4cb79
 
 
 
 
 
 
 
 
 
 
41928ca
 
 
 
 
 
79ccf40
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94b847
79ccf40
b94b847
 
be4cb79
b94b847
 
be4cb79
 
b94b847
 
 
 
 
 
 
 
 
 
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
be4cb79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import gradio as gr
import torch
import json
from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig
from peft import PeftModel

# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")  # Ensure this is set in your environment

if not HUGGINGFACE_TOKEN:
    raise ValueError("❌ HUGGINGFACE_TOKEN is not set. Please set it in your environment.")

print("✅ HUGGINGFACE_TOKEN is set.")

# Model Paths
MODEL_PATH = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"  # Directly using quantized model
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"

# Function to load Llama model (without LoRA)
def load_quantized_model(model_path):
    print(f"🔄 Loading Quantized Model: {model_path}")

    # Load the config manually
    config = LlamaConfig.from_pretrained(model_path)

    # Initialize model
    model = LlamaForCausalLM(config)

    # Load the quantized weights manually
    checkpoint_path = os.path.join(model_path, "consolidated.00.pth")
    if not os.path.exists(checkpoint_path):
        raise FileNotFoundError(f"❌ Checkpoint file not found: {checkpoint_path}")

    state_dict = torch.load(checkpoint_path, map_location="cpu")

    # Load the state dict into the model
    model.load_state_dict(state_dict, strict=False)

    # Move model to GPU if available
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    print("✅ Quantized model loaded successfully!")
    return model

# Load Tokenizer
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH, token=HUGGINGFACE_TOKEN, legacy=False)

# Load the model
model = load_quantized_model(MODEL_PATH)

# Load the quantized Llama model
tokenizer, model = load_llama_model(QUANTIZED_MODEL)

# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)

# Define Prompt Templates
PROMPTS = {
    "project_analysis": """Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}""",
    
    "code_generation": """Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation""",

    "risk_analysis": """Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies"""
}

# Function: Content Moderation using Llama Guard
def moderate_input(user_input):
    prompt = f"""Input: {user_input}
Please verify that this input doesn't violate any content policies."""

    inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)

    with torch.no_grad():
        outputs = guard_model.generate(inputs.input_ids, max_length=256, temperature=0.1)
    
    response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if any(flag in response.lower() for flag in ["flagged", "violated", "policy violation"]):
        return "⚠️ Content flagged by Llama Guard. Please modify your input."
    
    return None

# Function: Generate AI responses
def generate_response(prompt_type, **kwargs):
    prompt = PROMPTS[prompt_type].format(**kwargs)
    
    moderation_warning = moderate_input(prompt)
    if moderation_warning:
        return moderation_warning

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True)

    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            max_length=512,
            temperature=0.7 if prompt_type == "project_analysis" else 0.5,
            top_p=0.9,
            do_sample=True
        )

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Define UI functions
def analyze_project(project_description):
    return generate_response("project_analysis", project_description=project_description)

def generate_code(feature_description, programming_language, coding_standards):
    return generate_response("code_generation", feature_description=feature_description, programming_language=programming_language, coding_standards=coding_standards)

def predict_risks(project_data):
    return generate_response("risk_analysis", project_data=project_data)

# Gradio UI Setup
def create_gradio_interface():
    with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
        
        with gr.Tab("Project Setup"):
            project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
            project_output = gr.Textbox(label="Project Analysis", lines=15)
            analyze_btn = gr.Button("Analyze Project")
            analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
        
        with gr.Tab("Code Assistant"):
            code_input = gr.Textbox(label="Feature Description", lines=3)
            lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
            standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
            code_output = gr.Code(label="Generated Code")
            code_btn = gr.Button("Generate Code")
            code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
        
        with gr.Tab("Risk Analysis"):
            risk_input = gr.Textbox(label="Project Plan", lines=5)
            risk_output = gr.JSON(label="Risk Predictions") 
            risk_btn = gr.Button("Predict Risks")
            risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
        
        with gr.Tab("Live Collaboration"):
            gr.Markdown("## Real-time Project Collaboration")
            chat = gr.Chatbot(height=400)
            msg = gr.Textbox(label="Chat with AI PM")
            clear = gr.Button("Clear Chat")
            
            def respond(message, chat_history):
                moderation_warning = moderate_input(message)
                if moderation_warning:
                    chat_history.append((message, moderation_warning))
                    return "", chat_history

                history_text = ""
                for i, (usr, ai) in enumerate(chat_history[-3:]):
                    history_text += f"User: {usr}\nAI: {ai}\n"
                
                prompt = f"""Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}"""

                inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
                
                with torch.no_grad():
                    outputs = model.generate(
                        inputs.input_ids,
                        max_length=1024,
                        temperature=0.7,
                        top_p=0.9,
                        do_sample=True
                    )
                
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
                chat_history.append((message, response))
                return "", chat_history
            
            msg.submit(respond, [msg, chat], [msg, chat])
            clear.click(lambda: None, None, chat, queue=False)

    return demo

# Run Gradio App
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(share=True)