File size: 7,524 Bytes
d43fa94 41928ca 48bf8a4 3ecadea 41928ca 79ccf40 d43fa94 be4cb79 8c6c12f 6d76df7 be4cb79 3ecadea 8c6c12f 6d76df7 196f1dd 48bf8a4 6d76df7 609a610 6d76df7 61d529e 8c6c12f b94b847 e519624 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 41928ca be4cb79 6451d60 79ccf40 6451d60 b94b847 41928ca 6451d60 41928ca 6451d60 79ccf40 41928ca be4cb79 41928ca 79ccf40 41928ca b94b847 be4cb79 79ccf40 b94b847 609a610 b94b847 41928ca be4cb79 41928ca 79ccf40 41928ca b94b847 79ccf40 b94b847 be4cb79 b94b847 be4cb79 b94b847 41928ca be4cb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import gradio as gr
import torch
import json
from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig
from peft import PeftModel
# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
if not HUGGINGFACE_TOKEN:
raise ValueError("❌ HUGGINGFACE_TOKEN is not set. Please set it in your environment.")
print("✅ HUGGINGFACE_TOKEN is set.")
# Model Paths
MODEL_PATH = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Directly using quantized model
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
# Function to load Llama model (without LoRA)
def load_quantized_model(model_path):
print(f"🔄 Loading Quantized Model: {model_path}")
# Load the config manually
config = LlamaConfig.from_pretrained(model_path)
# Initialize model
model = LlamaForCausalLM(config)
# Load the quantized weights manually
checkpoint_path = os.path.join(model_path, "consolidated.00.pth")
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"❌ Checkpoint file not found: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location="cpu")
# Load the state dict into the model
model.load_state_dict(state_dict, strict=False)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print("✅ Quantized model loaded successfully!")
return model
# Load Tokenizer
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH, token=HUGGINGFACE_TOKEN, legacy=False)
# Load the model
model = load_quantized_model(MODEL_PATH)
# Load the quantized Llama model
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)
# Define Prompt Templates
PROMPTS = {
"project_analysis": """Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}""",
"code_generation": """Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation""",
"risk_analysis": """Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies"""
}
# Function: Content Moderation using Llama Guard
def moderate_input(user_input):
prompt = f"""Input: {user_input}
Please verify that this input doesn't violate any content policies."""
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = guard_model.generate(inputs.input_ids, max_length=256, temperature=0.1)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if any(flag in response.lower() for flag in ["flagged", "violated", "policy violation"]):
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None
# Function: Generate AI responses
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=512,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Define UI functions
def analyze_project(project_description):
return generate_response("project_analysis", project_description=project_description)
def generate_code(feature_description, programming_language, coding_standards):
return generate_response("code_generation", feature_description=feature_description, programming_language=programming_language, coding_standards=coding_standards)
def predict_risks(project_data):
return generate_response("risk_analysis", project_data=project_data)
# Gradio UI Setup
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.Textbox(label="Project Analysis", lines=15)
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
history_text = ""
for i, (usr, ai) in enumerate(chat_history[-3:]):
history_text += f"User: {usr}\nAI: {ai}\n"
prompt = f"""Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True)
|