Update app.py
Browse files
app.py
CHANGED
@@ -23,43 +23,44 @@ QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this
|
|
23 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
24 |
|
25 |
# Function to load Llama model
|
26 |
-
def load_llama_model(
|
27 |
-
print(f"Loading
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
except Exception as e:
|
65 |
print(f"❌ Error loading model {model_path}: {e}")
|
|
|
23 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
24 |
|
25 |
# Function to load Llama model
|
26 |
+
def load_llama_model():
|
27 |
+
print(f"🔄 Loading Base Model: {BASE_MODEL}")
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=HUGGINGFACE_TOKEN)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
BASE_MODEL,
|
32 |
+
use_auth_token=HUGGINGFACE_TOKEN,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
low_cpu_mem_usage=True
|
35 |
+
)
|
36 |
+
|
37 |
+
print(f"✅ Base Model Loaded Successfully")
|
38 |
+
|
39 |
+
# Load QLoRA adapter if available
|
40 |
+
print(f"🔄 Loading QLoRA Adapter: {QLORA_ADAPTER}")
|
41 |
+
model = PeftModel.from_pretrained(model, QLORA_ADAPTER, use_auth_token=HUGGINGFACE_TOKEN)
|
42 |
+
print("🔄 Merging LoRA Weights...")
|
43 |
+
model = model.merge_and_unload()
|
44 |
+
print("✅ QLoRA Adapter Loaded Successfully")
|
45 |
+
|
46 |
+
model.eval()
|
47 |
+
return tokenizer, model
|
48 |
+
|
49 |
+
# Function to load Llama Guard Model for content moderation
|
50 |
+
def load_llama_guard():
|
51 |
+
print(f"🔄 Loading Llama Guard Model: {LLAMA_GUARD_NAME}")
|
52 |
+
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, use_auth_token=HUGGINGFACE_TOKEN)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
LLAMA_GUARD_NAME,
|
56 |
+
use_auth_token=HUGGINGFACE_TOKEN,
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
low_cpu_mem_usage=True
|
59 |
+
)
|
60 |
+
|
61 |
+
model.eval()
|
62 |
+
print("✅ Llama Guard Model Loaded Successfully")
|
63 |
+
return tokenizer, model
|
64 |
|
65 |
except Exception as e:
|
66 |
print(f"❌ Error loading model {model_path}: {e}")
|