Steph254 commited on
Commit
41928ca
·
verified ·
1 Parent(s): 43eafee

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -0
app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ import torch
4
+ import json
5
+ from datetime import datetime
6
+
7
+ # Load Llama 3 model (quantized for CPU hosting)
8
+ MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
10
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
11
+
12
+ # Load Llama Guard for content moderation
13
+ LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
14
+ guard_tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME)
15
+ guard_model = AutoModelForCausalLM.from_pretrained(LLAMA_GUARD_NAME, torch_dtype=torch.float16, device_map="auto")
16
+
17
+ # Define Prompt Templates
18
+ PROMPTS = {
19
+ "project_analysis": """Analyze this project description and generate:
20
+ 1. Project timeline with milestones
21
+ 2. Required technology stack
22
+ 3. Potential risks
23
+ 4. Team composition
24
+ 5. Cost estimation
25
+
26
+ Project: {project_description}""",
27
+
28
+ "code_generation": """Generate implementation code for this feature:
29
+ {feature_description}
30
+
31
+ Considerations:
32
+ - Use {programming_language}
33
+ - Follow {coding_standards}
34
+ - Include error handling
35
+ - Add documentation""",
36
+
37
+ "risk_analysis": """Predict potential risks for this project plan:
38
+ {project_data}
39
+
40
+ Format output as JSON with risk types, probabilities, and mitigation strategies"""
41
+ }
42
+
43
+ # Function: Content Moderation using Llama Guard
44
+ def moderate_input(user_input):
45
+ inputs = guard_tokenizer(user_input, return_tensors="pt", max_length=512, truncation=True)
46
+ outputs = guard_model.generate(inputs.input_ids, max_length=512)
47
+ response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
48
+
49
+ if "flagged" in response.lower():
50
+ return "⚠️ Content flagged by Llama Guard. Please modify your input."
51
+ return None # Safe input, proceed normally
52
+
53
+ # Function: Generate AI responses (Project Analysis, Code, or Risks)
54
+ def generate_response(prompt_type, **kwargs):
55
+ prompt = PROMPTS[prompt_type].format(**kwargs)
56
+
57
+ moderation_warning = moderate_input(prompt)
58
+ if moderation_warning:
59
+ return moderation_warning # Stop processing if flagged
60
+
61
+ inputs = tokenizer(prompt, return_tensors="pt", max_length=2048, truncation=True)
62
+
63
+ outputs = model.generate(
64
+ inputs.input_ids,
65
+ max_length=2048,
66
+ temperature=0.7 if prompt_type == "project_analysis" else 0.5,
67
+ top_p=0.9
68
+ )
69
+
70
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
71
+
72
+ # Function: Analyze project
73
+ def analyze_project(project_desc):
74
+ return generate_response("project_analysis", project_description=project_desc)
75
+
76
+ # Function: Generate code
77
+ def generate_code(feature_desc, lang="Python", standards="PEP8"):
78
+ return generate_response("code_generation", feature_description=feature_desc, programming_language=lang, coding_standards=standards)
79
+
80
+ # Function: Predict risks
81
+ def predict_risks(project_data):
82
+ risks = generate_response("risk_analysis", project_data=project_data)
83
+ try:
84
+ return json.loads(risks) # Convert to structured JSON if valid
85
+ except json.JSONDecodeError:
86
+ return {"error": "Invalid JSON response. Please refine your input."}
87
+
88
+ # Gradio UI
89
+ def create_gradio_interface():
90
+ with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
91
+ gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
92
+
93
+ # Project Analysis Tab
94
+ with gr.Tab("Project Setup"):
95
+ project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
96
+ project_output = gr.JSON(label="Project Analysis")
97
+ analyze_btn = gr.Button("Analyze Project")
98
+ analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
99
+
100
+ # Code Generation Tab
101
+ with gr.Tab("Code Assistant"):
102
+ code_input = gr.Textbox(label="Feature Description", lines=3)
103
+ lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
104
+ standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
105
+ code_output = gr.Code(label="Generated Code")
106
+ code_btn = gr.Button("Generate Code")
107
+ code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
108
+
109
+ # Risk Analysis Tab
110
+ with gr.Tab("Risk Analysis"):
111
+ risk_input = gr.Textbox(label="Project Plan", lines=5)
112
+ risk_output = gr.JSON(label="Risk Predictions")
113
+ risk_btn = gr.Button("Predict Risks")
114
+ risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
115
+
116
+ # Real-time Chatbot for Collaboration
117
+ with gr.Tab("Live Collaboration"):
118
+ gr.Markdown("## Real-time Project Collaboration")
119
+ chat = gr.Chatbot(height=400)
120
+ msg = gr.Textbox(label="Chat with AI PM")
121
+ clear = gr.Button("Clear Chat")
122
+
123
+ def respond(message, chat_history):
124
+ moderation_warning = moderate_input(message)
125
+ if moderation_warning:
126
+ chat_history.append((message, moderation_warning))
127
+ return "", chat_history
128
+
129
+ prompt = f"""Project Management Chat:
130
+ Context: {message}
131
+ Chat History: {chat_history}
132
+ User: {message}
133
+ AI:"""
134
+
135
+ inputs = tokenizer(prompt, return_tensors="pt")
136
+ outputs = model.generate(inputs.input_ids, max_length=2048)
137
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
138
+ chat_history.append((message, response))
139
+ return "", chat_history
140
+
141
+ msg.submit(respond, [msg, chat], [msg, chat])
142
+ clear.click(lambda: None, None, chat, queue=False)
143
+
144
+ return demo
145
+
146
+ # Run Gradio App
147
+ if __name__ == "__main__":
148
+ interface = create_gradio_interface()
149
+ interface.launch(share=True)