File size: 5,910 Bytes
ebc6394
 
df6a94f
 
bab9362
acd5a3a
ebc6394
882d1dd
273b099
80d4bd4
ebc6394
 
 
 
bab9362
 
 
7789887
 
 
 
 
 
080f94f
7789887
 
 
 
 
 
 
 
 
 
 
080f94f
7789887
 
 
 
 
 
 
ebc6394
7789887
ebc6394
 
7789887
 
 
 
 
 
 
 
 
ebc6394
7789887
 
080f94f
7789887
 
 
 
ebc6394
 
7789887
ebc6394
 
 
3db0d3b
ebc6394
 
 
882d1dd
ebc6394
 
 
df6a94f
 
 
 
 
 
 
 
 
 
 
 
 
ebc6394
df6a94f
 
bab9362
df6a94f
 
3409295
df6a94f
ebc6394
3409295
 
 
 
 
cb74933
3409295
 
 
cb74933
 
3409295
df6a94f
 
 
 
 
3409295
 
 
df6a94f
ebc6394
5190f16
df6a94f
 
 
7789887
df6a94f
 
882d1dd
df6a94f
 
 
3409295
 
 
 
 
 
 
7789887
 
 
df6a94f
 
bab9362
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
from transformers import pipeline
import nltk

# Download NLTK data for sentence tokenization
nltk.download('punkt_tab')

# Load the Hugging Face pipelines
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
sentiment_analyzer = pipeline("sentiment-analysis", model="SarahMakk/CustomModel_amazon_sentiment_moshew_128_10k")

# Define the categories for customer feedback
CATEGORIES = ["Pricing", "Feature", "Customer Service", "Delivery", "Quality"]

# Define the fixed confidence threshold
CONFIDENCE_THRESHOLD = 0.8

# Custom CSS for background colors
st.markdown(
    """
    <style>
    /* Background color for the title */
    .title-container {
        background-color: #f0f0f0;  /* Light gray background */
        padding: 10px;
        border-radius: 5px;
    }
    /* Background color for the description (st.markdown) */
    .description-container {
        background-color: #f0f0f0;  /* Light gray background */
        padding: 10px;
        border-radius: 5px;
    }
    /* Background color for the text area (feedback_input) */
    .stTextArea textarea {
        background-color: #e6f3ff;  /* Light blue background */
        border-radius: 5px;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Streamlit app UI
# Title with icon
st.markdown(
    """
    <div class="title-container">
        <h1>📢 Customer Feedback Categorization with Sentiment Analysis</h1>
    </div>
    """,
    unsafe_allow_html=True
)

# Description with background color
st.markdown(
    """
    <div class="description-container">
        This app uses Hugging Face models to detect the topics and intent of customer feedback
        and determine the sentiment (positive👍 or negative👎) for each relevant category.
        A single feedback may belong to multiple categories, such as Pricing, Feature, and Customer Service.
    </div>
    """,
    unsafe_allow_html=True
)

# Input text box for customer feedback with background color
feedback_input = st.text_area(
    "Enter customer feedback:",
    placeholder="Type your feedback here...",
    height=200
)

# Classify button
if st.button("Classify Feedback"):
    if not feedback_input.strip():
        st.error("Please provide valid feedback text.")
    else:
        # Split the feedback into sentences
        sentences = nltk.sent_tokenize(feedback_input)
        if not sentences:
            st.error("Could not split feedback into sentences.")
            st.stop()

        # Dictionary to store results for each category
        category_results = {category: [] for category in CATEGORIES}

        # Process each sentence
        for sentence in sentences:
            # Perform zero-shot classification on the sentence
            classification_result = classifier(sentence, CATEGORIES, multi_label=True)

            # Get categories with scores above the threshold
            for label, score in zip(classification_result["labels"], classification_result["scores"]):
                if score >= CONFIDENCE_THRESHOLD:
                    # Perform sentiment analysis on the sentence
                    sentiment_result = sentiment_analyzer(sentence)
                    raw_label = sentiment_result[0]["label"]
                    sentiment_score = round(sentiment_result[0]["score"], 4)

                    # Map the raw label to NEGATIVE or POSITIVE
                    if raw_label == "LABEL_0":
                        sentiment_label = "NEGATIVE"
                        sentiment_icon = "👎"  # Thumbs-down icon for negative
                        sentiment_color = "red"  # Red color for negative
                    elif raw_label == "LABEL_1":
                        sentiment_label = "POSITIVE"
                        sentiment_icon = "👍"  # Thumbs-up icon for positive
                        sentiment_color = "green"  # Green color for positive
                    else:
                        sentiment_label = raw_label  # Fallback in case of unexpected label

                    # Store the result for the category
                    category_results[label].append({
                        "sentence": sentence,
                        "confidence": round(score, 4),
                        "sentiment": sentiment_label,
                        "sentiment_score": sentiment_score,
                        "sentiment_icon": sentiment_icon,
                        "sentiment_color": sentiment_color
                    })

        # Check if there are any relevant categories
        st.subheader("Categorized Feedback with Sentiment Analysis")
        found_categories = False

        for i, (category, results) in enumerate(category_results.items()):
            if results:  # If the category has any sentences
                found_categories = True
                st.write(f"### **{category}**")
                for result in results:
                    st.write(f"- **Sentence**: {result['sentence']}")
                    st.write(f"  - Confidence: {result['confidence']}")
                    # Use st.markdown with HTML to display the sentiment with icon and color
                    st.markdown(
                        f"  - Sentiment: {result['sentiment_icon']} "
                        f"<span style='color:{result['sentiment_color']}'>{result['sentiment']}</span> "
                        f"(Score: {result['sentiment_score']})",
                        unsafe_allow_html=True
                    )
                # Add a horizontal divider after each category (except the last one)
                if i < len(category_results) - 1 and any(category_results[cat] for cat in list(category_results.keys())[i+1:]):
                    st.markdown("---")  # Horizontal line to separate categories

        if not found_categories:
            st.warning("No categories met the confidence threshold of 0.8.")