Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,15 +59,31 @@ if st.button("Classify Feedback"):
|
|
59 |
if score >= CONFIDENCE_THRESHOLD:
|
60 |
# Perform sentiment analysis on the sentence
|
61 |
sentiment_result = sentiment_analyzer(sentence)
|
62 |
-
|
63 |
sentiment_score = round(sentiment_result[0]["score"], 4)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Store the result for the category
|
66 |
category_results[label].append({
|
67 |
"sentence": sentence,
|
68 |
"confidence": round(score, 4),
|
69 |
"sentiment": sentiment_label,
|
70 |
-
"sentiment_score": sentiment_score
|
|
|
|
|
71 |
})
|
72 |
|
73 |
# Check if there are any relevant categories
|
@@ -81,7 +97,13 @@ if st.button("Classify Feedback"):
|
|
81 |
for result in results:
|
82 |
st.write(f"- **Sentence**: {result['sentence']}")
|
83 |
st.write(f" - Confidence: {result['confidence']}")
|
84 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
st.write("") # Add a blank line for readability
|
86 |
|
87 |
if not found_categories:
|
|
|
59 |
if score >= CONFIDENCE_THRESHOLD:
|
60 |
# Perform sentiment analysis on the sentence
|
61 |
sentiment_result = sentiment_analyzer(sentence)
|
62 |
+
raw_label = sentiment_result[0]["label"]
|
63 |
sentiment_score = round(sentiment_result[0]["score"], 4)
|
64 |
|
65 |
+
# Map the raw label to NEGATIVE or POSITIVE
|
66 |
+
if raw_label == "LABEL_0":
|
67 |
+
sentiment_label = "NEGATIVE"
|
68 |
+
sentiment_icon = "👎" # Thumbs-down icon for negative
|
69 |
+
sentiment_color = "red" # Red color for negative
|
70 |
+
elif raw_label == "LABEL_1":
|
71 |
+
sentiment_label = "POSITIVE"
|
72 |
+
sentiment_icon = "👍" # Thumbs-up icon for positive
|
73 |
+
sentiment_color = "green" # Green color for positive
|
74 |
+
else:
|
75 |
+
sentiment_label = raw_label # Fallback in case of unexpected label
|
76 |
+
sentiment_icon = "❓" # Question mark for unknown
|
77 |
+
sentiment_color = "gray" # Gray color for unknown
|
78 |
+
|
79 |
# Store the result for the category
|
80 |
category_results[label].append({
|
81 |
"sentence": sentence,
|
82 |
"confidence": round(score, 4),
|
83 |
"sentiment": sentiment_label,
|
84 |
+
"sentiment_score": sentiment_score,
|
85 |
+
"sentiment_icon": sentiment_icon,
|
86 |
+
"sentiment_color": sentiment_color
|
87 |
})
|
88 |
|
89 |
# Check if there are any relevant categories
|
|
|
97 |
for result in results:
|
98 |
st.write(f"- **Sentence**: {result['sentence']}")
|
99 |
st.write(f" - Confidence: {result['confidence']}")
|
100 |
+
# Use st.markdown with HTML to display the sentiment with icon and color
|
101 |
+
st.markdown(
|
102 |
+
f" - Sentiment: {result['sentiment_icon']} "
|
103 |
+
f"<span style='color:{result['sentiment_color']}'>{result['sentiment']}</span> "
|
104 |
+
f"(Score: {result['sentiment_score']})",
|
105 |
+
unsafe_allow_html=True
|
106 |
+
)
|
107 |
st.write("") # Add a blank line for readability
|
108 |
|
109 |
if not found_categories:
|