Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load the Hugging Face
|
5 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
6 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
7 |
|
8 |
# Define the categories for customer feedback
|
9 |
CATEGORIES = ["Pricing", "Feature", "Customer Service", "Delivery", "Quality"]
|
10 |
|
11 |
-
# Function to map sentiment to a rating (1 to 5)
|
12 |
-
def sentiment_to_rating(sentiment_label, sentiment_score):
|
13 |
-
"""
|
14 |
-
Convert sentiment analysis results (label and score) to a rating from 1 (most negative) to 5 (most positive).
|
15 |
-
"""
|
16 |
-
if sentiment_label == "POSITIVE":
|
17 |
-
if sentiment_score >= 0.8:
|
18 |
-
return 5 # Most positive
|
19 |
-
elif sentiment_score >= 0.6:
|
20 |
-
return 4
|
21 |
-
elif sentiment_score >= 0.4:
|
22 |
-
return 3
|
23 |
-
else:
|
24 |
-
return 2
|
25 |
-
elif sentiment_label == "NEGATIVE":
|
26 |
-
if sentiment_score >= 0.8:
|
27 |
-
return 1 # Most negative
|
28 |
-
elif sentiment_score >= 0.6:
|
29 |
-
return 2
|
30 |
-
elif sentiment_score >= 0.4:
|
31 |
-
return 3
|
32 |
-
else:
|
33 |
-
return 4
|
34 |
-
|
35 |
# Streamlit app UI
|
36 |
-
st.title("Customer Feedback Categorization
|
37 |
st.markdown(
|
38 |
"""
|
39 |
-
|
40 |
-
and determine the sentiment (
|
|
|
41 |
"""
|
42 |
)
|
43 |
|
@@ -48,7 +25,7 @@ feedback_input = st.text_area(
|
|
48 |
height=200
|
49 |
)
|
50 |
|
51 |
-
# Confidence threshold for
|
52 |
threshold = st.slider(
|
53 |
"Confidence Threshold",
|
54 |
min_value=0.0,
|
@@ -59,7 +36,7 @@ threshold = st.slider(
|
|
59 |
)
|
60 |
|
61 |
# Classify button
|
62 |
-
if st.button("
|
63 |
if not feedback_input.strip():
|
64 |
st.error("Please provide valid feedback text.")
|
65 |
else:
|
@@ -68,29 +45,24 @@ if st.button("Analyze Feedback"):
|
|
68 |
|
69 |
# Filter categories with scores above the threshold
|
70 |
relevant_categories = {
|
71 |
-
label: score
|
72 |
for label, score in zip(classification_result["labels"], classification_result["scores"])
|
73 |
if score >= threshold
|
74 |
}
|
75 |
|
|
|
76 |
if relevant_categories:
|
77 |
-
st.subheader("Categorized Feedback
|
78 |
-
|
79 |
-
# Perform sentiment analysis for the feedback
|
80 |
-
sentiment_result = sentiment_analyzer(feedback_input)
|
81 |
-
sentiment_score = sentiment_result[0]["score"]
|
82 |
-
sentiment_label = sentiment_result[0]["label"]
|
83 |
|
84 |
-
# Display results for each category
|
85 |
for category, score in relevant_categories.items():
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
-
st.
|
|
|
94 |
else:
|
95 |
-
st.warning("No categories matched the selected confidence threshold.")
|
96 |
-
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load the Hugging Face pipelines
|
5 |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
6 |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
7 |
|
8 |
# Define the categories for customer feedback
|
9 |
CATEGORIES = ["Pricing", "Feature", "Customer Service", "Delivery", "Quality"]
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Streamlit app UI
|
12 |
+
st.title("Customer Feedback Categorization with Sentiment Analysis")
|
13 |
st.markdown(
|
14 |
"""
|
15 |
+
This app uses Hugging Face models to detect the topics and intent of customer feedback
|
16 |
+
and determine the sentiment (positive or negative) for each relevant category.
|
17 |
+
A single feedback may belong to multiple categories, such as Pricing, Feature, and Customer Service.
|
18 |
"""
|
19 |
)
|
20 |
|
|
|
25 |
height=200
|
26 |
)
|
27 |
|
28 |
+
# Confidence threshold for zero-shot classification
|
29 |
threshold = st.slider(
|
30 |
"Confidence Threshold",
|
31 |
min_value=0.0,
|
|
|
36 |
)
|
37 |
|
38 |
# Classify button
|
39 |
+
if st.button("Classify Feedback"):
|
40 |
if not feedback_input.strip():
|
41 |
st.error("Please provide valid feedback text.")
|
42 |
else:
|
|
|
45 |
|
46 |
# Filter categories with scores above the threshold
|
47 |
relevant_categories = {
|
48 |
+
label: round(score, 4)
|
49 |
for label, score in zip(classification_result["labels"], classification_result["scores"])
|
50 |
if score >= threshold
|
51 |
}
|
52 |
|
53 |
+
# Check if there are any relevant categories
|
54 |
if relevant_categories:
|
55 |
+
st.subheader("Categorized Feedback with Sentiment Analysis")
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
for category, score in relevant_categories.items():
|
58 |
+
# Extract the part of feedback relevant to the category for sentiment analysis
|
59 |
+
sentiment_result = sentiment_analyzer(feedback_input)
|
60 |
+
sentiment_label = sentiment_result[0]["label"]
|
61 |
+
sentiment_score = round(sentiment_result[0]["score"], 4)
|
62 |
+
|
63 |
+
# Display the category, confidence score, and sentiment result
|
64 |
+
st.write(f"### **{category}**")
|
65 |
+
st.write(f"- Confidence: {score}")
|
66 |
+
st.write(f"- Sentiment: {sentiment_label} (Score: {sentiment_score})")
|
67 |
else:
|
68 |
+
st.warning("No categories matched the selected confidence threshold.")
|
|