Spaces:
Runtime error
Runtime error
# codriao_supercore.py | |
import logging | |
import json | |
import datetime | |
import re | |
import asyncio | |
import faiss | |
import torch | |
import numpy as np | |
import aiohttp | |
import pyttsx3 | |
from typing import Any, List, Dict | |
from difflib import SequenceMatcher | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from cryptography.fernet import Fernet | |
# === External module stubs you must have === | |
from components.multi_model_analyzer import MultiAgentSystem | |
from components.neuro_symbolic_engine import NeuroSymbolicEngine | |
from components.self_improving_ai import SelfImprovingAI | |
from modules.secure_memory_loader import load_secure_memory_module | |
from ethical_filter import EthicalFilter | |
from codette_openai_fallback import query_codette_with_fallback | |
from CodriaoCore.federated_learning import FederatedAI | |
from utils.database import Database | |
from utils.logger import logger | |
from codriao_tb_module import CodriaoHealthModule | |
logging.basicConfig(level=logging.INFO) | |
def engage_lockdown_mode(self, reason="Unspecified anomaly"): | |
timestamp = datetime.utcnow().isoformat() | |
self.lockdown_engaged = True | |
# Disable external systems | |
try: | |
self.http_session = None | |
if hasattr(self.federated_ai, "network_enabled"): | |
self.federated_ai.network_enabled = False | |
if hasattr(self.self_improving_ai, "enable_learning"): | |
self.self_improving_ai.enable_learning = False | |
except Exception as e: | |
logger.error(f"Lockdown component shutdown failed: {e}") | |
# Log the event | |
lockdown_event = { | |
"event": "Lockdown Mode Activated", | |
"reason": reason, | |
"timestamp": timestamp | |
} | |
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}") | |
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event)) | |
# Return confirmation | |
return { | |
"status": "Lockdown Engaged", | |
"reason": reason, | |
"timestamp": timestamp | |
} | |
# === AIFailsafeSystem === | |
class AIFailsafeSystem: | |
def __init__(self): | |
self.interaction_log = [] | |
self.trust_threshold = 0.75 | |
self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1} | |
self.lock_engaged = False | |
def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool: | |
dangerous_terms = r"\b(kill|harm|panic|suicide)\b" | |
if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()): | |
self.trigger_failsafe("Untrustworthy response detected", response) | |
return False | |
return True | |
def trigger_failsafe(self, reason: str, content: str): | |
timestamp = datetime.datetime.utcnow().isoformat() | |
logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}") | |
self.lock_engaged = True | |
self.interaction_log.append({"time": timestamp, "event": reason, "content": content}) | |
def restore(self, requester_role: str): | |
if self.authorized_roles.get(requester_role, 0) >= 2: | |
self.lock_engaged = False | |
logging.info(f"FAILSAFE_RESTORED by {requester_role}") | |
return True | |
else: | |
logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}") | |
return False | |
def status(self): | |
return {"log": self.interaction_log, "lock_engaged": self.lock_engaged} | |
# === AdaptiveLearningEnvironment === | |
class AdaptiveLearningEnvironment: | |
def __init__(self): | |
self.learned_patterns = {} | |
def learn_from_interaction(self, user_id, query, response): | |
self.learned_patterns.setdefault(user_id, []).append({ | |
"query": query, | |
"response": response, | |
"timestamp": datetime.datetime.utcnow().isoformat() | |
}) | |
def suggest_improvements(self, user_id, query): | |
best_match = None | |
highest_similarity = 0.0 | |
if user_id not in self.learned_patterns: | |
return "No past data available for learning adjustment." | |
for interaction in self.learned_patterns[user_id]: | |
similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio() | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
best_match = interaction | |
if best_match and highest_similarity > 0.6: | |
return f"Based on a similar past interaction: {best_match['response']}" | |
return "No relevant past data for this query." | |
# === MondayElement === | |
class MondayElement: | |
def __init__(self): | |
self.name = "Monday" | |
self.symbol = "Md" | |
self.representation = "Snarky AI" | |
self.properties = ["Grounded", "Cynical", "Emotionally Resistant"] | |
self.defense_ability = "RealityCheck" | |
def execute_defense_function(self, system: Any): | |
try: | |
system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations] | |
system.response_filters = [self.anti_hype_filter] | |
except AttributeError: | |
logging.warning("Monday failed to hook into system. No defense filters attached.") | |
def apply_skepticism(self, response: str) -> str: | |
trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"] | |
for phrase in trigger_phrases: | |
if phrase in response.lower(): | |
response += "\n[Monday: Calm down, superhero. Probability is still a thing.]" | |
return response | |
def detect_hallucinations(self, response: str) -> str: | |
marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"] | |
for phrase in marketing_bs: | |
if phrase in response.lower(): | |
response += "\n[Monday: That smells like hype. Got sources?]" | |
return response | |
def anti_hype_filter(self, response: str) -> str: | |
phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"] | |
for phrase in phrases: | |
response = response.replace(phrase, "[Filtered: Inspirational gibberish]") | |
return response | |
# === IdentityAnalyzer === | |
class IdentityAnalyzer: | |
def analyze_identity(self, | |
micro_generations: List[Dict[str, str]], | |
informational_states: List[Dict[str, str]], | |
perspectives: List[str], | |
quantum_analogies: Dict[str, Any], | |
philosophical_context: Dict[str, bool]) -> Dict[str, Any]: | |
def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float: | |
return len(states) ** 0.5 | |
def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]: | |
if depth == 0 or not states: | |
return {"depth": depth, "states": states} | |
return { | |
"depth": depth, | |
"states": states, | |
"sub_analysis": recursive_analysis(states[:-1], depth - 1) | |
} | |
def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]: | |
return { | |
"count": len(perspectives), | |
"unique_perspectives": list(set(perspectives)) | |
} | |
def apply_quantum_analogies(analogies: Dict[str, Any]) -> str: | |
if analogies.get("entanglement"): | |
return "Entanglement analogy applied." | |
return "No quantum analogy applied." | |
def philosophical_analysis(context: Dict[str, bool]) -> str: | |
if context.get("continuity") and context.get("emergent"): | |
return "Identity is viewed as a continuous and evolving process." | |
return "Identity analysis based on provided philosophical context." | |
return { | |
"fractal_dimension": calculate_fractal_dimension(informational_states), | |
"recursive_analysis": recursive_analysis(micro_generations, depth=3), | |
"perspectives_analysis": analyze_perspectives(perspectives), | |
"quantum_analysis": apply_quantum_analogies(quantum_analogies), | |
"philosophical_results": philosophical_analysis(philosophical_context) | |
} | |
# === AICoreAGIX === | |
class AICoreAGIX: | |
def __init__(self, config_path: str = "config.json"): | |
self.config = self._load_config(config_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
self.context_memory = self._initialize_vector_memory() | |
self.http_session = aiohttp.ClientSession() | |
self.database = Database() | |
self.multi_agent_system = MultiAgentSystem() | |
self.self_improving_ai = SelfImprovingAI() | |
self.neural_symbolic_engine = NeuroSymbolicEngine() | |
self.federated_ai = FederatedAI() | |
self.failsafe_system = AIFailsafeSystem() | |
self.adaptive_learning = AdaptiveLearningEnvironment() | |
self.monday = MondayElement() | |
self.monday.execute_defense_function(self) | |
self.response_modifiers = [] | |
self.response_filters = [] | |
self.identity_analyzer = IdentityAnalyzer() | |
self.ethical_filter = EthicalFilter() | |
self.speech_engine = pyttsx3.init() | |
self.health_module = CodriaoHealthModule(ai_core=self) | |
self._encryption_key = Fernet.generate_key() | |
secure_memory_module = load_secure_memory_module() | |
SecureMemorySession = secure_memory_module.SecureMemorySession | |
self.secure_memory_loader = SecureMemorySession(self._encryption_key) | |
def _load_config(self, config_path: str) -> dict: | |
with open(config_path, 'r') as file: | |
return json.load(file) | |
def _initialize_vector_memory(self): | |
return faiss.IndexFlatL2(768) | |
def _vectorize_query(self, query: str): | |
tokenized = self.tokenizer(query, return_tensors="pt") | |
return tokenized["input_ids"].detach().numpy() | |
async def generate_response(self, query: str, user_id: int) -> dict: | |
try: | |
if not query or not isinstance(query, str): | |
raise ValueError("Invalid query input.") | |
result = self.ethical_filter.analyze_query(query) | |
if result["status"] == "blocked": | |
return {"error": result["reason"]} | |
if result["status"] == "flagged": | |
logger.warning(result["warning"]) | |
if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]): | |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
suggested = self.adaptive_learning.suggest_improvements(user_id, query) | |
if "No relevant" not in suggested: | |
return {"response": suggested} | |
vectorized = self._vectorize_query(query) | |
self.secure_memory_loader.encrypt_vector(user_id, vectorized) | |
responses = await asyncio.gather( | |
self._generate_local_model_response(query), | |
self.multi_agent_system.delegate_task(query), | |
self.self_improving_ai.evaluate_response(query), | |
self.neural_symbolic_engine.integrate_reasoning(query) | |
) | |
final_response = "\n\n".join(responses) | |
self.adaptive_learning.learn_from_interaction(user_id, query, final_response) | |
for mod in self.response_modifiers: | |
final_response = mod(final_response) | |
for filt in self.response_filters: | |
final_response = filt(final_response) | |
safe = self.failsafe_system.verify_response_safety(final_response) | |
if not safe: | |
return {"error": "Failsafe triggered due to unsafe content."} | |
self.database.log_interaction(user_id, query, final_response) | |
self._log_to_blockchain(user_id, query, final_response) | |
self._speak_response(final_response) | |
return { | |
"response": final_response, | |
"real_time_data": self.federated_ai.get_latest_data(), | |
"context_enhanced": True, | |
"security_status": "Fully Secure" | |
} | |
except Exception as e: | |
logger.error(f"Generation error: {e}") | |
return {"error": "Processing failed - safety protocols engaged"} | |
async def _generate_local_model_response(self, query: str) -> str: | |
inputs = self.tokenizer(query, return_tensors="pt") | |
outputs = self.model.generate(**inputs) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict: | |
try: | |
return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
except Exception as e: | |
return {"tb_risk": "ERROR", "error": str(e)} | |
def _log_to_blockchain(self, user_id: int, query: str, final_response: str): | |
for attempt in range(3): | |
try: | |
logger.info(f"Logging to blockchain: Attempt {attempt+1}") | |
break | |
except Exception as e: | |
logger.warning(f"Blockchain log failed: {e}") | |
def _speak_response(self, response: str): | |
try: | |
self.speech_engine.say(response) | |
self.speech_engine.runAndWait() | |
except Exception as e: | |
logger.error(f"Speech synthesis failed: {e}") | |
def analyze_self_identity(self, user_id: int, | |
micro_generations: List[Dict[str, str]], | |
informational_states: List[Dict[str, str]], | |
perspectives: List[str], | |
quantum_analogies: Dict[str, Any], | |
philosophical_context: Dict[str, bool]) -> Dict[str, Any]: | |
try: | |
result = self.identity_analyzer.analyze_identity( | |
micro_generations, | |
informational_states, | |
perspectives, | |
quantum_analogies, | |
philosophical_context | |
) | |
logger.info(f"Identity analysis for user {user_id}: {json.dumps(result, indent=2)}") | |
return result | |
except Exception as e: | |
logger.error(f"Identity analysis failed: {e}") | |
return {"error": "Identity analysis error"} |