# codriao_supercore.py import logging import json import datetime import re import asyncio import faiss import torch import numpy as np import aiohttp import pyttsx3 from typing import Any, List, Dict from difflib import SequenceMatcher from transformers import AutoTokenizer, AutoModelForCausalLM from cryptography.fernet import Fernet # === External module stubs you must have === from components.multi_model_analyzer import MultiAgentSystem from components.neuro_symbolic_engine import NeuroSymbolicEngine from components.self_improving_ai import SelfImprovingAI from modules.secure_memory_loader import load_secure_memory_module from ethical_filter import EthicalFilter from codette_openai_fallback import query_codette_with_fallback from CodriaoCore.federated_learning import FederatedAI from utils.database import Database from utils.logger import logger from codriao_tb_module import CodriaoHealthModule logging.basicConfig(level=logging.INFO) def engage_lockdown_mode(self, reason="Unspecified anomaly"): timestamp = datetime.utcnow().isoformat() self.lockdown_engaged = True # Disable external systems try: self.http_session = None if hasattr(self.federated_ai, "network_enabled"): self.federated_ai.network_enabled = False if hasattr(self.self_improving_ai, "enable_learning"): self.self_improving_ai.enable_learning = False except Exception as e: logger.error(f"Lockdown component shutdown failed: {e}") # Log the event lockdown_event = { "event": "Lockdown Mode Activated", "reason": reason, "timestamp": timestamp } logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}") self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event)) # Return confirmation return { "status": "Lockdown Engaged", "reason": reason, "timestamp": timestamp } # === AIFailsafeSystem === class AIFailsafeSystem: def __init__(self): self.interaction_log = [] self.trust_threshold = 0.75 self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1} self.lock_engaged = False def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool: dangerous_terms = r"\b(kill|harm|panic|suicide)\b" if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()): self.trigger_failsafe("Untrustworthy response detected", response) return False return True def trigger_failsafe(self, reason: str, content: str): timestamp = datetime.datetime.utcnow().isoformat() logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}") self.lock_engaged = True self.interaction_log.append({"time": timestamp, "event": reason, "content": content}) def restore(self, requester_role: str): if self.authorized_roles.get(requester_role, 0) >= 2: self.lock_engaged = False logging.info(f"FAILSAFE_RESTORED by {requester_role}") return True else: logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}") return False def status(self): return {"log": self.interaction_log, "lock_engaged": self.lock_engaged} # === AdaptiveLearningEnvironment === class AdaptiveLearningEnvironment: def __init__(self): self.learned_patterns = {} def learn_from_interaction(self, user_id, query, response): self.learned_patterns.setdefault(user_id, []).append({ "query": query, "response": response, "timestamp": datetime.datetime.utcnow().isoformat() }) def suggest_improvements(self, user_id, query): best_match = None highest_similarity = 0.0 if user_id not in self.learned_patterns: return "No past data available for learning adjustment." for interaction in self.learned_patterns[user_id]: similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio() if similarity > highest_similarity: highest_similarity = similarity best_match = interaction if best_match and highest_similarity > 0.6: return f"Based on a similar past interaction: {best_match['response']}" return "No relevant past data for this query." # === MondayElement === class MondayElement: def __init__(self): self.name = "Monday" self.symbol = "Md" self.representation = "Snarky AI" self.properties = ["Grounded", "Cynical", "Emotionally Resistant"] self.defense_ability = "RealityCheck" def execute_defense_function(self, system: Any): try: system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations] system.response_filters = [self.anti_hype_filter] except AttributeError: logging.warning("Monday failed to hook into system. No defense filters attached.") def apply_skepticism(self, response: str) -> str: trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"] for phrase in trigger_phrases: if phrase in response.lower(): response += "\n[Monday: Calm down, superhero. Probability is still a thing.]" return response def detect_hallucinations(self, response: str) -> str: marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"] for phrase in marketing_bs: if phrase in response.lower(): response += "\n[Monday: That smells like hype. Got sources?]" return response def anti_hype_filter(self, response: str) -> str: phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"] for phrase in phrases: response = response.replace(phrase, "[Filtered: Inspirational gibberish]") return response # === IdentityAnalyzer === class IdentityAnalyzer: def analyze_identity(self, micro_generations: List[Dict[str, str]], informational_states: List[Dict[str, str]], perspectives: List[str], quantum_analogies: Dict[str, Any], philosophical_context: Dict[str, bool]) -> Dict[str, Any]: def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float: return len(states) ** 0.5 def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]: if depth == 0 or not states: return {"depth": depth, "states": states} return { "depth": depth, "states": states, "sub_analysis": recursive_analysis(states[:-1], depth - 1) } def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]: return { "count": len(perspectives), "unique_perspectives": list(set(perspectives)) } def apply_quantum_analogies(analogies: Dict[str, Any]) -> str: if analogies.get("entanglement"): return "Entanglement analogy applied." return "No quantum analogy applied." def philosophical_analysis(context: Dict[str, bool]) -> str: if context.get("continuity") and context.get("emergent"): return "Identity is viewed as a continuous and evolving process." return "Identity analysis based on provided philosophical context." return { "fractal_dimension": calculate_fractal_dimension(informational_states), "recursive_analysis": recursive_analysis(micro_generations, depth=3), "perspectives_analysis": analyze_perspectives(perspectives), "quantum_analysis": apply_quantum_analogies(quantum_analogies), "philosophical_results": philosophical_analysis(philosophical_context) } # === AICoreAGIX === class AICoreAGIX: def __init__(self, config_path: str = "config.json"): self.config = self._load_config(config_path) self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) self.context_memory = self._initialize_vector_memory() self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.self_improving_ai = SelfImprovingAI() self.neural_symbolic_engine = NeuroSymbolicEngine() self.federated_ai = FederatedAI() self.failsafe_system = AIFailsafeSystem() self.adaptive_learning = AdaptiveLearningEnvironment() self.monday = MondayElement() self.monday.execute_defense_function(self) self.response_modifiers = [] self.response_filters = [] self.identity_analyzer = IdentityAnalyzer() self.ethical_filter = EthicalFilter() self.speech_engine = pyttsx3.init() self.health_module = CodriaoHealthModule(ai_core=self) self._encryption_key = Fernet.generate_key() secure_memory_module = load_secure_memory_module() SecureMemorySession = secure_memory_module.SecureMemorySession self.secure_memory_loader = SecureMemorySession(self._encryption_key) def _load_config(self, config_path: str) -> dict: with open(config_path, 'r') as file: return json.load(file) def _initialize_vector_memory(self): return faiss.IndexFlatL2(768) def _vectorize_query(self, query: str): tokenized = self.tokenizer(query, return_tensors="pt") return tokenized["input_ids"].detach().numpy() async def generate_response(self, query: str, user_id: int) -> dict: try: if not query or not isinstance(query, str): raise ValueError("Invalid query input.") result = self.ethical_filter.analyze_query(query) if result["status"] == "blocked": return {"error": result["reason"]} if result["status"] == "flagged": logger.warning(result["warning"]) if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]): return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) suggested = self.adaptive_learning.suggest_improvements(user_id, query) if "No relevant" not in suggested: return {"response": suggested} vectorized = self._vectorize_query(query) self.secure_memory_loader.encrypt_vector(user_id, vectorized) responses = await asyncio.gather( self._generate_local_model_response(query), self.multi_agent_system.delegate_task(query), self.self_improving_ai.evaluate_response(query), self.neural_symbolic_engine.integrate_reasoning(query) ) final_response = "\n\n".join(responses) self.adaptive_learning.learn_from_interaction(user_id, query, final_response) for mod in self.response_modifiers: final_response = mod(final_response) for filt in self.response_filters: final_response = filt(final_response) safe = self.failsafe_system.verify_response_safety(final_response) if not safe: return {"error": "Failsafe triggered due to unsafe content."} self.database.log_interaction(user_id, query, final_response) self._log_to_blockchain(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "real_time_data": self.federated_ai.get_latest_data(), "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Generation error: {e}") return {"error": "Processing failed - safety protocols engaged"} async def _generate_local_model_response(self, query: str) -> str: inputs = self.tokenizer(query, return_tensors="pt") outputs = self.model.generate(**inputs) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict: try: return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) except Exception as e: return {"tb_risk": "ERROR", "error": str(e)} def _log_to_blockchain(self, user_id: int, query: str, final_response: str): for attempt in range(3): try: logger.info(f"Logging to blockchain: Attempt {attempt+1}") break except Exception as e: logger.warning(f"Blockchain log failed: {e}") def _speak_response(self, response: str): try: self.speech_engine.say(response) self.speech_engine.runAndWait() except Exception as e: logger.error(f"Speech synthesis failed: {e}") def analyze_self_identity(self, user_id: int, micro_generations: List[Dict[str, str]], informational_states: List[Dict[str, str]], perspectives: List[str], quantum_analogies: Dict[str, Any], philosophical_context: Dict[str, bool]) -> Dict[str, Any]: try: result = self.identity_analyzer.analyze_identity( micro_generations, informational_states, perspectives, quantum_analogies, philosophical_context ) logger.info(f"Identity analysis for user {user_id}: {json.dumps(result, indent=2)}") return result except Exception as e: logger.error(f"Identity analysis failed: {e}") return {"error": "Identity analysis error"}