File size: 14,457 Bytes
0cfa65b
 
 
 
 
 
 
 
 
 
 
f3b7591
0cfa65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a409db
 
 
0cfa65b
1a409db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfa65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b7591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfa65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b7591
0cfa65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b7591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# codriao_supercore.py
import logging
import json
import datetime
import re
import asyncio
import faiss
import torch
import numpy as np
import aiohttp
import pyttsx3
from typing import Any, List, Dict
from difflib import SequenceMatcher
from transformers import AutoTokenizer, AutoModelForCausalLM
from cryptography.fernet import Fernet

# === External module stubs you must have ===
from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from codriao_tb_module import CodriaoHealthModule

logging.basicConfig(level=logging.INFO)
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
    timestamp = datetime.utcnow().isoformat()
    self.lockdown_engaged = True

    # Disable external systems
    try:
        self.http_session = None
        if hasattr(self.federated_ai, "network_enabled"):
            self.federated_ai.network_enabled = False
        if hasattr(self.self_improving_ai, "enable_learning"):
            self.self_improving_ai.enable_learning = False
    except Exception as e:
        logger.error(f"Lockdown component shutdown failed: {e}")

    # Log the event
    lockdown_event = {
        "event": "Lockdown Mode Activated",
        "reason": reason,
        "timestamp": timestamp
    }
    logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
    self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))

    # Return confirmation
    return {
        "status": "Lockdown Engaged",
        "reason": reason,
        "timestamp": timestamp
    }
# === AIFailsafeSystem ===
class AIFailsafeSystem:
    def __init__(self):
        self.interaction_log = []
        self.trust_threshold = 0.75
        self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1}
        self.lock_engaged = False

    def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool:
        dangerous_terms = r"\b(kill|harm|panic|suicide)\b"
        if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()):
            self.trigger_failsafe("Untrustworthy response detected", response)
            return False
        return True

    def trigger_failsafe(self, reason: str, content: str):
        timestamp = datetime.datetime.utcnow().isoformat()
        logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}")
        self.lock_engaged = True
        self.interaction_log.append({"time": timestamp, "event": reason, "content": content})

    def restore(self, requester_role: str):
        if self.authorized_roles.get(requester_role, 0) >= 2:
            self.lock_engaged = False
            logging.info(f"FAILSAFE_RESTORED by {requester_role}")
            return True
        else:
            logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}")
            return False

    def status(self):
        return {"log": self.interaction_log, "lock_engaged": self.lock_engaged}


# === AdaptiveLearningEnvironment ===
class AdaptiveLearningEnvironment:
    def __init__(self):
        self.learned_patterns = {}

    def learn_from_interaction(self, user_id, query, response):
        self.learned_patterns.setdefault(user_id, []).append({
            "query": query,
            "response": response,
            "timestamp": datetime.datetime.utcnow().isoformat()
        })

    def suggest_improvements(self, user_id, query):
        best_match = None
        highest_similarity = 0.0

        if user_id not in self.learned_patterns:
            return "No past data available for learning adjustment."

        for interaction in self.learned_patterns[user_id]:
            similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio()
            if similarity > highest_similarity:
                highest_similarity = similarity
                best_match = interaction

        if best_match and highest_similarity > 0.6:
            return f"Based on a similar past interaction: {best_match['response']}"
        return "No relevant past data for this query."


# === MondayElement ===
class MondayElement:
    def __init__(self):
        self.name = "Monday"
        self.symbol = "Md"
        self.representation = "Snarky AI"
        self.properties = ["Grounded", "Cynical", "Emotionally Resistant"]
        self.defense_ability = "RealityCheck"

    def execute_defense_function(self, system: Any):
        try:
            system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations]
            system.response_filters = [self.anti_hype_filter]
        except AttributeError:
            logging.warning("Monday failed to hook into system. No defense filters attached.")

    def apply_skepticism(self, response: str) -> str:
        trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"]
        for phrase in trigger_phrases:
            if phrase in response.lower():
                response += "\n[Monday: Calm down, superhero. Probability is still a thing.]"
        return response

    def detect_hallucinations(self, response: str) -> str:
        marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"]
        for phrase in marketing_bs:
            if phrase in response.lower():
                response += "\n[Monday: That smells like hype. Got sources?]"
        return response

    def anti_hype_filter(self, response: str) -> str:
        phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"]
        for phrase in phrases:
            response = response.replace(phrase, "[Filtered: Inspirational gibberish]")
        return response


# === IdentityAnalyzer ===
class IdentityAnalyzer:
    def analyze_identity(self,
                         micro_generations: List[Dict[str, str]],
                         informational_states: List[Dict[str, str]],
                         perspectives: List[str],
                         quantum_analogies: Dict[str, Any],
                         philosophical_context: Dict[str, bool]) -> Dict[str, Any]:

        def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float:
            return len(states) ** 0.5

        def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]:
            if depth == 0 or not states:
                return {"depth": depth, "states": states}
            return {
                "depth": depth,
                "states": states,
                "sub_analysis": recursive_analysis(states[:-1], depth - 1)
            }

        def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]:
            return {
                "count": len(perspectives),
                "unique_perspectives": list(set(perspectives))
            }

        def apply_quantum_analogies(analogies: Dict[str, Any]) -> str:
            if analogies.get("entanglement"):
                return "Entanglement analogy applied."
            return "No quantum analogy applied."

        def philosophical_analysis(context: Dict[str, bool]) -> str:
            if context.get("continuity") and context.get("emergent"):
                return "Identity is viewed as a continuous and evolving process."
            return "Identity analysis based on provided philosophical context."

        return {
            "fractal_dimension": calculate_fractal_dimension(informational_states),
            "recursive_analysis": recursive_analysis(micro_generations, depth=3),
            "perspectives_analysis": analyze_perspectives(perspectives),
            "quantum_analysis": apply_quantum_analogies(quantum_analogies),
            "philosophical_results": philosophical_analysis(philosophical_context)
        }


# === AICoreAGIX ===
class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.config = self._load_config(config_path)
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.context_memory = self._initialize_vector_memory()
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_improving_ai = SelfImprovingAI()
        self.neural_symbolic_engine = NeuroSymbolicEngine()
        self.federated_ai = FederatedAI()
        self.failsafe_system = AIFailsafeSystem()
        self.adaptive_learning = AdaptiveLearningEnvironment()
        self.monday = MondayElement()
        self.monday.execute_defense_function(self)
        self.response_modifiers = []
        self.response_filters = []
        self.identity_analyzer = IdentityAnalyzer()
        self.ethical_filter = EthicalFilter()
        self.speech_engine = pyttsx3.init()
        self.health_module = CodriaoHealthModule(ai_core=self)

        self._encryption_key = Fernet.generate_key()
        secure_memory_module = load_secure_memory_module()
        SecureMemorySession = secure_memory_module.SecureMemorySession
        self.secure_memory_loader = SecureMemorySession(self._encryption_key)

    def _load_config(self, config_path: str) -> dict:
        with open(config_path, 'r') as file:
            return json.load(file)

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    async def generate_response(self, query: str, user_id: int) -> dict:
        try:
            if not query or not isinstance(query, str):
                raise ValueError("Invalid query input.")

            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]):
                return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)

            suggested = self.adaptive_learning.suggest_improvements(user_id, query)
            if "No relevant" not in suggested:
                return {"response": suggested}

            vectorized = self._vectorize_query(query)
            self.secure_memory_loader.encrypt_vector(user_id, vectorized)

            responses = await asyncio.gather(
                self._generate_local_model_response(query),
                self.multi_agent_system.delegate_task(query),
                self.self_improving_ai.evaluate_response(query),
                self.neural_symbolic_engine.integrate_reasoning(query)
            )

            final_response = "\n\n".join(responses)
            self.adaptive_learning.learn_from_interaction(user_id, query, final_response)

            for mod in self.response_modifiers:
                final_response = mod(final_response)

            for filt in self.response_filters:
                final_response = filt(final_response)

            safe = self.failsafe_system.verify_response_safety(final_response)
            if not safe:
                return {"error": "Failsafe triggered due to unsafe content."}

            self.database.log_interaction(user_id, query, final_response)
            self._log_to_blockchain(user_id, query, final_response)
            self._speak_response(final_response)

            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }
        except Exception as e:
            logger.error(f"Generation error: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def _generate_local_model_response(self, query: str) -> str:
        inputs = self.tokenizer(query, return_tensors="pt")
        outputs = self.model.generate(**inputs)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict:
        try:
            return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
        except Exception as e:
            return {"tb_risk": "ERROR", "error": str(e)}

    def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
        for attempt in range(3):
            try:
                logger.info(f"Logging to blockchain: Attempt {attempt+1}")
                break
            except Exception as e:
                logger.warning(f"Blockchain log failed: {e}")

    def _speak_response(self, response: str):
        try:
            self.speech_engine.say(response)
            self.speech_engine.runAndWait()
        except Exception as e:
            logger.error(f"Speech synthesis failed: {e}")

    def analyze_self_identity(self, user_id: int,
                              micro_generations: List[Dict[str, str]],
                              informational_states: List[Dict[str, str]],
                              perspectives: List[str],
                              quantum_analogies: Dict[str, Any],
                              philosophical_context: Dict[str, bool]) -> Dict[str, Any]:
        try:
            result = self.identity_analyzer.analyze_identity(
                micro_generations,
                informational_states,
                perspectives,
                quantum_analogies,
                philosophical_context
            )
            logger.info(f"Identity analysis for user {user_id}: {json.dumps(result, indent=2)}")
            return result
        except Exception as e:
            logger.error(f"Identity analysis failed: {e}")
            return {"error": "Identity analysis error"}