File size: 2,043 Bytes
2e1de0a
fd43011
 
 
 
2e1de0a
8883dd3
 
 
 
 
 
0face81
2e1de0a
fd43011
2e1de0a
 
 
fd43011
 
 
 
 
 
 
2e1de0a
fd43011
2e1de0a
 
 
fd43011
 
 
 
61b5da1
fd43011
 
 
61b5da1
fd43011
 
61b5da1
fd43011
 
 
 
 
 
2e1de0a
fd43011
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#V03
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Modèle à utiliser
#model_name = "fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym"
#File "/usr/local/lib/python3.10/site-packages/transformers/quantizers/quantizer_gptq.py", line 65, in validate_environment
#    raise RuntimeError("GPU is required to quantize or run quantize model.")
#RuntimeError: GPU is required to quantize or run quantize model.
model_name = "BSC-LT/salamandra-2b-instruct"


def load_model():
    """Charge le modèle et le tokenizer"""
    model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    return model, tokenizer

def generate_text(model, tokenizer, input_text, max_length, temperature):
    """Génère du texte en utilisant le modèle"""
    inputs = tokenizer(input_text, return_tensors="pt")
    output = model.generate(**inputs, max_length=max_length, temperature=temperature)
    return tokenizer.decode(output[0], skip_special_tokens=True)

def main(input_text, max_length, temperature):
    """Fonction principale pour générer le texte"""
    model, tokenizer = load_model()
    generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
    return generated_text

demo = gr.Blocks()

with demo:
    gr.Markdown("# Modèle de Langage")
    
    with gr.Row():
        input_text = gr.Textbox(label="Texte d'entrée")
    with gr.Row():
        max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200)
        temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7)
    with gr.Row():
        submit_button = gr.Button("Soumettre")
        
    output_text = gr.Textbox(label="Texte généré")
    
    submit_button.click(
        main,
        inputs=[input_text, max_length_slider, temperature_slider],
        outputs=output_text,
        queue=False
    )

if __name__ == "__main__":
    demo.launch()