Spaces:
Runtime error
Runtime error
File size: 2,043 Bytes
2e1de0a fd43011 2e1de0a 8883dd3 0face81 2e1de0a fd43011 2e1de0a fd43011 2e1de0a fd43011 2e1de0a fd43011 61b5da1 fd43011 61b5da1 fd43011 61b5da1 fd43011 2e1de0a fd43011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
#V03
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Modèle à utiliser
#model_name = "fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym"
#File "/usr/local/lib/python3.10/site-packages/transformers/quantizers/quantizer_gptq.py", line 65, in validate_environment
# raise RuntimeError("GPU is required to quantize or run quantize model.")
#RuntimeError: GPU is required to quantize or run quantize model.
model_name = "BSC-LT/salamandra-2b-instruct"
def load_model():
"""Charge le modèle et le tokenizer"""
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
return model, tokenizer
def generate_text(model, tokenizer, input_text, max_length, temperature):
"""Génère du texte en utilisant le modèle"""
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
return tokenizer.decode(output[0], skip_special_tokens=True)
def main(input_text, max_length, temperature):
"""Fonction principale pour générer le texte"""
model, tokenizer = load_model()
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
return generated_text
demo = gr.Blocks()
with demo:
gr.Markdown("# Modèle de Langage")
with gr.Row():
input_text = gr.Textbox(label="Texte d'entrée")
with gr.Row():
max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200)
temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7)
with gr.Row():
submit_button = gr.Button("Soumettre")
output_text = gr.Textbox(label="Texte généré")
submit_button.click(
main,
inputs=[input_text, max_length_slider, temperature_slider],
outputs=output_text,
queue=False
)
if __name__ == "__main__":
demo.launch() |