Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#V01
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Liste des modèles disponibles
|
8 |
+
model_list = [
|
9 |
+
"fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym",
|
10 |
+
"MisterAI/jpacifico_Chocolatine-3B-Instruct-DPO-v1.2",
|
11 |
+
# Ajoutez d'autres modèles ici
|
12 |
+
]
|
13 |
+
|
14 |
+
def load_model(model_name):
|
15 |
+
"""Charge le modèle et le tokenizer"""
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
21 |
+
"""Génère du texte en utilisant le modèle"""
|
22 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
23 |
+
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
24 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
def main(model_name, input_text, max_length, temperature):
|
27 |
+
"""Fonction principale pour générer le texte"""
|
28 |
+
model, tokenizer = load_model(model_name)
|
29 |
+
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
30 |
+
return generated_text
|
31 |
+
|
32 |
+
demo = gr.Blocks()
|
33 |
+
|
34 |
+
with demo:
|
35 |
+
gr.Markdown("# Try It")
|
36 |
+
|
37 |
+
with gr.Row():
|
38 |
+
model_select = gr.Dropdown(model_list, label="Sélectionner un modèle")
|
39 |
+
load_button = gr.Button("Charger le modèle")
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
input_text = gr.Textbox(label="Texte d'entrée")
|
43 |
+
max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200)
|
44 |
+
temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7)
|
45 |
+
submit_button = gr.Button("Soumettre")
|
46 |
+
|
47 |
+
output_text = gr.Textbox(label="Texte généré")
|
48 |
+
history = gr.JSON(label="Historique")
|
49 |
+
|
50 |
+
load_button.click(
|
51 |
+
load_model,
|
52 |
+
inputs=model_select,
|
53 |
+
outputs=None,
|
54 |
+
queue=False
|
55 |
+
)
|
56 |
+
|
57 |
+
submit_button.click(
|
58 |
+
main,
|
59 |
+
inputs=[model_select, input_text, max_length_slider, temperature_slider],
|
60 |
+
outputs=output_text,
|
61 |
+
queue=False
|
62 |
+
)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
demo.launch()
|