Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,16 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
"fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym",
|
10 |
-
"MisterAI/jpacifico_Chocolatine-3B-Instruct-DPO-v1.2",
|
11 |
-
# Ajoutez d'autres modèles ici
|
12 |
-
]
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
import gradio as gr
|
17 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
18 |
|
19 |
-
def load_model(
|
20 |
"""Charge le modèle et le tokenizer"""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
return model, tokenizer
|
25 |
|
26 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
27 |
"""Génère du texte en utilisant le modèle"""
|
@@ -29,25 +18,17 @@ def generate_text(model, tokenizer, input_text, max_length, temperature):
|
|
29 |
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
30 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
31 |
|
32 |
-
def main(
|
33 |
"""Fonction principale pour générer le texte"""
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return generated_text
|
38 |
-
else:
|
39 |
-
return "Veuillez sélectionner un modèle"
|
40 |
|
41 |
demo = gr.Blocks()
|
42 |
|
43 |
with demo:
|
44 |
gr.Markdown("# Modèle de Langage")
|
45 |
|
46 |
-
with gr.Row():
|
47 |
-
model_select = gr.Dropdown(model_list, label="Sélectionner un modèle")
|
48 |
-
with gr.Row():
|
49 |
-
load_button = gr.Button("Charger le modèle")
|
50 |
-
|
51 |
with gr.Row():
|
52 |
input_text = gr.Textbox(label="Texte d'entrée")
|
53 |
with gr.Row():
|
@@ -57,18 +38,10 @@ with demo:
|
|
57 |
submit_button = gr.Button("Soumettre")
|
58 |
|
59 |
output_text = gr.Textbox(label="Texte généré")
|
60 |
-
history = gr.JSON(label="Historique")
|
61 |
-
|
62 |
-
load_button.click(
|
63 |
-
load_model,
|
64 |
-
inputs=model_name,
|
65 |
-
outputs=None,
|
66 |
-
queue=False
|
67 |
-
)
|
68 |
|
69 |
submit_button.click(
|
70 |
main,
|
71 |
-
inputs=[
|
72 |
outputs=output_text,
|
73 |
queue=False
|
74 |
)
|
|
|
1 |
+
#V03
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
+
# Modèle à utiliser
|
7 |
+
model_name = "fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def load_model():
|
10 |
"""Charge le modèle et le tokenizer"""
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
+
return model, tokenizer
|
|
|
14 |
|
15 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
16 |
"""Génère du texte en utilisant le modèle"""
|
|
|
18 |
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
19 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
|
21 |
+
def main(input_text, max_length, temperature):
|
22 |
"""Fonction principale pour générer le texte"""
|
23 |
+
model, tokenizer = load_model()
|
24 |
+
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
25 |
+
return generated_text
|
|
|
|
|
|
|
26 |
|
27 |
demo = gr.Blocks()
|
28 |
|
29 |
with demo:
|
30 |
gr.Markdown("# Modèle de Langage")
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
with gr.Row():
|
33 |
input_text = gr.Textbox(label="Texte d'entrée")
|
34 |
with gr.Row():
|
|
|
38 |
submit_button = gr.Button("Soumettre")
|
39 |
|
40 |
output_text = gr.Textbox(label="Texte généré")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
submit_button.click(
|
43 |
main,
|
44 |
+
inputs=[input_text, max_length_slider, temperature_slider],
|
45 |
outputs=output_text,
|
46 |
queue=False
|
47 |
)
|