content
stringlengths
22
815k
id
int64
0
4.91M
def _build_timecode(time, fps, drop_frame=False, additional_metadata=None): """ Makes a timecode xml element tree. .. warning:: The drop_frame parameter is currently ignored and auto-determined by rate. This is because the underlying otio timecode conversion assumes DFTC based on rate. :param time: The :class: `opentime.RationalTime` for the timecode. :param fps: The framerate for the timecode. :param drop_frame: If True, generates drop-frame timecode. :param additional_metadata: A dictionary with other metadata items like ``field``, ``reel``, ``source``, and ``format``. It is assumed this dictionary is of the form generated by :func:`_xml_tree_to_dict` when the file was read originally. :return: The ``timecode`` element. """ if additional_metadata: # Only allow legal child items for the timecode element filtered = { k: v for k, v in additional_metadata.items() if k in ("field", "reel", "source", "format") } tc_element = _dict_to_xml_tree(filtered, "timecode") else: tc_element = cElementTree.Element("timecode") tc_element.append(_build_rate(fps)) rate_is_not_ntsc = (tc_element.find('./rate/ntsc').text == "FALSE") if drop_frame and rate_is_not_ntsc: tc_fps = fps * (1000 / 1001.0) else: tc_fps = fps # Get the time values tc_time = opentime.RationalTime(time.value_rescaled_to(fps), tc_fps) tc_string = opentime.to_timecode(tc_time, tc_fps, drop_frame) _append_new_sub_element(tc_element, "string", text=tc_string) frame_number = int(round(time.value)) _append_new_sub_element( tc_element, "frame", text="{:.0f}".format(frame_number) ) drop_frame = (";" in tc_string) display_format = "DF" if drop_frame else "NDF" _append_new_sub_element(tc_element, "displayformat", text=display_format) return tc_element
1,700
def transform(nodes, fxn, *args, **kwargs): """ Apply an arbitrary function to an array of node coordinates. Parameters ---------- nodes : numpy.ndarray An N x M array of individual node coordinates (i.e., the x-coords or the y-coords only) fxn : callable The transformation to be applied to the whole ``nodes`` array args, kwargs Additional positional and keyword arguments that are passed to ``fxn``. The final call will be ``fxn(nodes, *args, **kwargs)``. Returns ------- transformed : numpy.ndarray The transformed array. """ return fxn(nodes, *args, **kwargs)
1,701
def create_input( basedir, pertdir, latout=False, longwave=False, slc=slice(0, None, None) ): """Extract variables from a given directory and places into dictionaries. It assumes that base and pert are different directories and only one experiment output is present in each directory. Slicing into time chunks is allowed and providing the filenames follow CMIP6 convention they should be concatenated in the correct order. Variables required are rsdt, rsus, rsds, clt, rsdscs, rsuscs, rsut, rsutcs An error will be raised if variables are not detected. Parameters ---------- basedir : str Directory containing control climate simulation variables pertdir : str Directory containing perturbed climate simulation variables latout : bool, default=False if True, include array of latitude points in the output. longwave : bool, default=False if True, do the longwave calculation using cloud radiative effect, in addition to the shortwave calculation using APRP. slc: `slice`, optional Slice of indices to use from each dataset if not all of them. Returns ------- base, pert : dict of array_like of variables needed for APRP from control pert: dict of variables needed for APRP from experiment [lat]: latitude points relating to axis 1 of arrays """ base = {} pert = {} if longwave: varlist = [ "rsdt", "rsus", "rsds", "clt", "rsdscs", "rsuscs", "rsut", "rsutcs", "rlut", "rlutcs", ] else: varlist = ["rsdt", "rsus", "rsds", "clt", "rsdscs", "rsuscs", "rsut", "rsutcs"] def _extract_files(filenames, var, directory): if len(filenames) == 0: raise RuntimeError( f"No variables of name {var} found in directory {directory}" ) for i, filename in enumerate(filenames): ncfile = Dataset(filename) invar = ncfile.variables[var][slc, ...] lat = ncfile.variables["lat"][:] ncfile.close() if i == 0: outvar = invar else: # This works for me with CMIP6 netcdfs, but we don't have a small # example to test with outvar = np.append(outvar, invar, axis=0) # pragma: nocover return outvar, lat for var in varlist: filenames = sorted(glob.glob(f"{basedir}/{var}_*.nc")) base[var], lat = _extract_files(filenames, var, basedir) filenames = sorted(glob.glob(f"{pertdir}/{var}_*.nc")) pert[var], lat = _extract_files(filenames, var, pertdir) if latout: return base, pert, lat return base, pert
1,702
def get_tax_proteins(tax_id, tax_prot_dict, prot_id_dict, gbk_dict, cache_dir, args): """Get the proteins linked to a tax id in NCBI, and link the tax id with the local db protein ids :param tax_id: str, NCBI tax db id :param tax_prot_dict: {ncbi tax id: {local db protein ids}} :param prot_id_dict: dict {protein ncbi id: prot acc} :param gbk_dict: dict, {prot acc: local db id} :param cache_dir: Path, path to cache dir :param args: cmd-line args parser Return dict {tax_id: {local db protein ids}} and bool (True=success, False=failed) """ logger = logging.getLogger(__name__) try: with entrez_retry( args.retries, Entrez.elink, id=tax_id, db="Protein", dbfrom="Taxonomy", linkname="taxonomy_protein", ) as handle: tax_links = Entrez.read(handle, validate=False) except (AttributeError, TypeError, RuntimeError) as err: logger.warning(f"Failed to link NCBI tax id to NCBI Protein db for tax id {tax_id}\n{err}") return tax_prot_dict, False try: tax_prot_dict[tax_id] except KeyError: tax_prot_dict[tax_id] = set() for result in tax_links: for item in result['LinkSetDb']: links = item['Link'] for link in links: linked_prot_id = link['Id'] # check if from the local database try: prot_ver_acc = prot_id_dict[linked_prot_id] except KeyError: continue try: prot_local_db_id = gbk_dict[prot_ver_acc] except KeyError: logger.error( "Did not previously retrieved data from the local " f"db for {prot_local_db_id}\n" "Caching and skipping protein" ) with open((cache_dir/"failed_local_db_retrieval.out"), "a") as fh: fh.write(f"{prot_local_db_id}\n") continue tax_prot_dict[tax_id].add(prot_local_db_id) return tax_prot_dict, True
1,703
def define_features_vectorizer(columns, training_data, testing_data = None, ngramrange=(1,1)): """ Define the features for classification using CountVectorizer. Parameters ---------- column: String or list of strings if using multiple columns Names of columns of df that are used for trainig the classifier training_data: Pandas dataframe The dataframe containing the training data for the classifier testing_data: Pandas dataframe The dataframe containing the testing data for the classifier ngramrange: tuple (min_n, max_n), with min_n, max_n integer values range for ngrams used for vectorization Returns ------- vectorizer: sklearn CountVectorizer CountVectorizer fit and transformed for training data training_features: sparse matrix Document-term matrix for training data testing_features: sparse matrix Document-term matrix for testing data """ #intialise Countvectorizer and fit transform to data vectorizer = CountVectorizer(ngram_range = ngramrange) vectorizer.fit_transform(training_data[columns].values) #build matrixes for training_features and testing_features training_features=vectorizer.transform(training_data[columns].values) if testing_data is not None: testing_features=vectorizer.transform(testing_data[columns].values) else: testing_features = None return vectorizer, training_features, testing_features
1,704
def resolve_4d_input_blob( hparams: tf.contrib.training.HParams, runtime_bs: tf.Tensor, features: dict, feature_columns: list, info_log: bool = False, ) -> tf.Tensor: """Convert a dict feature input to a 4D input cube with dimension (NHWC). this function is experimental. Arguments: hparams {tf.contrib.training.HParams} -- hyper parameters runtime_bs {tf.Tensor} -- the batch_size in runtime features {dict} -- the dict of feature feature_columns {list} -- the list of feature columns Keyword Arguments: info_log {bool} -- True to enable debugging info logging (default: {False}) Returns: tf.Tensor -- The created 4D input Tensor """ # initialize vars frame_shape = resolve_simple_number_array(hparams, "frameShape") batch_input_shape_tensor = tf.convert_to_tensor([runtime_bs] + frame_shape) padding = resolve_simple_number_array(hparams, "padding") # Process time-series and non-time-series features one by one feature_list = [] for key in sorted(features): cur_feature = features[key] is_array, _ = check_array_feature(cur_feature) # build ts feature planes if is_array: # padding if sum(padding) > 0: padding_tensor = tf.constant([[0, 0], padding]) cur_feature = tf.pad( cur_feature, padding_tensor, mode="CONSTANT", constant_values=0 ) # reshape cur_feature = tf.reshape(cur_feature, batch_input_shape_tensor) # cast to float if cur_feature.dtype != tf.float32: cur_feature = tf.cast(cur_feature, dtype=tf.float32) # add to list with added channel dim (NHWC) feature_list.append(cur_feature[:, :, :, tf.newaxis]) # log ts feature if info_log: tf.logging.info("{}: {}".format(key, cur_feature)) # build non-ts feature planes (Numerical Features) # note that we treat SparseTensor and Tensor with dtype=string as categorical features elif type(cur_feature) is tf.Tensor and cur_feature.dtype.name != "string": # tiling cur_feature = tf.tile( cur_feature[:, tf.newaxis], [1, frame_shape[0] * frame_shape[1]] ) # reshape cur_feature = tf.reshape(cur_feature, batch_input_shape_tensor) # cast to float if cur_feature.dtype != tf.float32: cur_feature = tf.cast(cur_feature, dtype=tf.float32) # add to list with added channel dim (NHWC) feature_list.append(cur_feature[:, :, :, tf.newaxis]) # log numerical feature if info_log: tf.logging.info("{}: {}".format(key, cur_feature)) # build non-ts feature planes (Categorical Features) else: cur_feature = tfc.input_layer( {key: cur_feature}, find_feature_column(key, feature_columns) ) # padding cur_feature = tf.tile( cur_feature[:, :, tf.newaxis], [1, 1, frame_shape[0] * frame_shape[1]] ) # split cur_features = tf.split( cur_feature, axis=1, num_or_size_splits=cur_feature.shape[1] ) # process each feature plane for entry in cur_features: # reshape entry = tf.reshape(entry, batch_input_shape_tensor) # cast to float if entry.dtype != tf.float32: entry = tf.cast(entry, dtype=tf.float32) # add to list with added channel dim (NHWC) feature_list.append(entry[:, :, :, tf.newaxis]) # log categorical feature plane if info_log: tf.logging.info("{}: {}".format(key, entry)) # channel stacking data = tf.concat(feature_list, -1) # interpolation interp = resolve_simple_number_array(hparams, "interp") if interp is not None and interp != frame_shape: data = tf.image.resize_images(data, tf.convert_to_tensor(interp)) return data
1,705
def GetPostgreSQLLoginInfo(): """ * Get database login information from pem file """ passfile = '/mnt/data/other/pem/sinnud_pg.dat' with open(passfile, 'r') as f: passinfo = f.read().strip() (host, user, dbname, password, port) = passinfo.split() if os.path.isfile(passfile): return (True, (host, user, dbname, password, port)) return (False, None)
1,706
def trace_condition(variables: TemplateVarsType) -> Generator: """Trace condition evaluation.""" trace_element = condition_trace_append(variables, trace_path_get()) trace_stack_push(trace_stack_cv, trace_element) try: yield trace_element except Exception as ex: trace_element.set_error(ex) raise ex finally: trace_stack_pop(trace_stack_cv)
1,707
def download_pictures(recent_seach_tweets): """ Download pictures from tweets :param recent_seach_tweets: list of dictionnaries """ # Downloading pictures print('%s - Downloading %d tweets' % (datetime.datetime.now().strftime('%d/%m/%Y - %H:%M'), len(recent_seach_tweets))) for tw in recent_seach_tweets: img_url = tw['images'][0] filename = tw['text'][:tw['text'].index("#")-1].lower().replace(' ','_') filename = "./downloaded_pics/%s.jpg" % filename urllib.request.urlretrieve(img_url, filename)
1,708
def show_graph_unique_not_callback(n_clicks, input_box): """ Function which is called by a wrapped function in another module. It takes user input in a text box, returns a graph if the query produces a hit in Solr. Returns an error message otherwise. ARGUMENTS: n_clicks: a parameter of the HTML button which indicates it has been clicked input_box: the content of the text box in which the user has entered a comma-separated search query. RETURNS: 1 graph (unique occurrences) of all terms which have results from Solr """ # Store the layout with the appropriate title and y axis labels for the graph layout_unique = go.Layout( title = 'Percentage of papers containing chosen entity mention(s) per Month', xaxis = {'title': 'Publication date', 'tickformat': '%b %y', 'tick0': '2007-04-30', 'dtick': 'M2', 'range': ['2007-03-25', '2018-01-25'], 'titlefont': {'size': 20}, 'tickfont': {'size': 15}}, yaxis = {'title': 'Percentage of papers with entity mention', 'ticksuffix': '%', 'titlefont': {'size': 19}, 'tickfont': {'size': 18}}, plot_bgcolor = colours['background'], paper_bgcolor = colours['background'], barmode = 'stack', hovermode = 'closest', font= { 'color': colours['text'], 'size': 15 }, showlegend=True, legend = {'font': {'size': 18}, 'x': 0, 'y': -0.5, 'orientation': 'h'} ) if input_box != '': # Get the input data: both freq_df dfs will have index= published_date, # columns = percentage_occurrences unique. input_list = input_box.lower().split(',') data_list_unique = [] notfound_list = [] for input_val in input_list: # Make sure to strip input_val, otherwise if the user enters a # space after the comma in the query, this space will get sent # to Solr. input_val = input_val.strip() # If the search phrase doesn't start with the wikipedia url, it is a # noun phrase which has to be converted to a URL if not input_val.startswith('http://en.wikipedia.org/wiki'): input_val = convert_phrase_to_url(input_val) freq_df_total, freq_df_unique = get_aggregated_data(input_val) if freq_df_unique is not None: # Plot the graphs, published_date (index) goes on the x-axis, # and percentage_occurrences (unique) goes on the y-axis. data_list_unique.append(go.Bar( x = freq_df_unique.index, y = freq_df_unique.percentage_occurrences, text = input_val.strip(), # hover text opacity = 0.7, name = input_val.strip() # legend text )) else: # Term not found, append it to the not found list and go to the # next term. notfound_list.append(input_val) if data_list_unique == []: if notfound_list != []: # Append the error message for the terms not found in the # Solr index # return html.Br() return not_found_message(notfound_list) # One or more of the Solr queries returned a result else: graph_unique_terms = {'data': data_list_unique, 'layout': layout_unique} if notfound_list != []: terms_not_found = not_found_message(notfound_list) #return terms_not_found, html.Br(), return terms_not_found, dcc.Graph(id='uniquefreq', figure= graph_unique_terms) return html.Br(), dcc.Graph(id='uniquefreq', figure= graph_unique_terms)
1,709
def _add_string_datatype(graph, length): """Add a custom string datatype to the graph refering. Args: graph (Graph): The graph to add the datatype to length (int): The maximim length of the string Returns: URIRef: The iri of the new datatype """ iri = rdflib_cuba[f"_datatypes/STRING-{length}"] triple = (iri, RDF.type, RDFS.Datatype) if graph is None or triple in graph: return iri graph.add(triple) # length_triple = (iri, rdflib_cuba._length, Literal(int(length))) # graph.add(length_triple) return iri
1,710
def cercle(x, y, r, color='black'): """tracé d'un cercle de centre (x,y) et de rayon r""" MonCanvas.create_oval(x - r, y - r, x + r, y + r, outline=color)
1,711
def get_selected_shipping_country(request): """Returns the selected shipping country for the passed request. This could either be an explicitely selected country of the current user or the default country of the shop. """ customer = customer_utils.get_customer(request) if customer: if customer.selected_shipping_address: return customer.selected_shipping_address.country elif customer.selected_country: return customer.selected_country return lfs.core.utils.get_default_shop(request).get_default_country()
1,712
def func_item_iterator_next(*args): """ func_item_iterator_next(fii, testf, ud) -> bool """ return _ida_funcs.func_item_iterator_next(*args)
1,713
def find_score_maxclip(tp_support, tn_support, clip_factor=ut.PHI + 1): """ returns score to clip true positives past. Args: tp_support (ndarray): tn_support (ndarray): Returns: float: clip_score Example: >>> # ENABLE_DOCTEST >>> from ibeis.algo.hots.score_normalization import * # NOQA >>> tp_support = np.array([100, 200, 50000]) >>> tn_support = np.array([10, 30, 110]) >>> clip_score = find_score_maxclip(tp_support, tn_support) >>> result = str(clip_score) >>> print(result) 287.983738762 """ max_true_positive_score = tp_support.max() max_true_negative_score = tn_support.max() if clip_factor is None: clip_score = max_true_positive_score else: overshoot_factor = max_true_positive_score / max_true_negative_score if overshoot_factor > clip_factor: clip_score = max_true_negative_score * clip_factor else: clip_score = max_true_positive_score return clip_score
1,714
def rho_prof_out(cluster, fileout, **kwargs): """Write density profile to file Parameters ---------- cluster : class StarCluster fileout : file opened file to write data to Returns ------- None Other Parameters ---------------- kwargs : str key word arguments for rho_prof History ------- 2018 - Written - Webb (UofT) """ fileout.write("%f " % (cluster.tphys)) rprof, pprof, nprof=rho_prof(cluster,**kwargs) for r in rprof: fileout.write("%f " % (r)) for p in pprof: fileout.write("%f " % (p)) for n in nprof: fileout.write("%f " % (n)) fileout.write("\n")
1,715
def create_sponsor(): """ Creates a new sponsor. --- tags: - sponsor summary: Create sponsor operationId: create_sponsor requestBody: content: application/json: schema: allOf: - $ref: '#/components/schemas/Sponsor' - type: object multipart/form-data: schema: type: object properties: sponsor: deprecated: true allOf: - $ref: '#/components/schemas/Sponsor' - type: object description: > Deprecated, do not use `multipart/form-data`, use `application/json`. properties: encoding: sponsor: contentType: application/json description: Created sponsor Object required: true responses: 201: description: OK 400: description: Bad request. 409: description: Sorry, that sponsor already exists. 5XX: description: Unexpected error. """ if "multipart/form-data" in request.content_type: try: data = json.loads(request.form.get("sponsor")) except JSONDecodeError: raise BadRequest("Invalid JSON sent in sponsor form part.") elif request.content_type == "application/json": data = request.get_json() else: raise UnsupportedMediaType() if not data: raise BadRequest() try: sponsor = Sponsor.createOne(**data) sponsor.save() except NotUniqueError: raise Conflict("Sorry, that sponsor already exists.") except ValidationError: raise BadRequest() res = { "status": "success", "message": "sponsor was created!" } res = make_response(res) if "multipart/form-data" in request.content_type: res.headers["Deprecation"] = ( "The use of multipart/form-data is deprecated. ") if "socials" in data: res.headers["Deprecation"] = ( "The socials field is deprecated use sponsor_website instead") return res, 201
1,716
def download_or_copy(uri, target_dir, fs=None) -> str: """Downloads or copies a file to a directory. Downloads or copies URI into target_dir. Args: uri: URI of file target_dir: local directory to download or copy file to fs: if supplied, use fs instead of automatically chosen FileSystem for uri Returns: the local path of file """ local_path = download_if_needed(uri, target_dir, fs=fs) shutil.copy(local_path, target_dir) return local_path
1,717
def main(): """ Handle command-line invocation of this script """ # TODO: read directory, num_annotators and coverage_level as # command-line parameters gen_spreadsheets(3, 1, 'data-20150519/')
1,718
async def test_sqlite_import(hass, client, caplog, monkeypatch): """Test import from sqlite keys file.""" m_open = mock_open(read_data="will raise JSONDecodeError") monkeypatch.setattr(client, "is_connected", Mock(return_value=True)) monkeypatch.setattr(client, "connect", Mock(return_value=True)) with patch( "homeassistant.components.webostv.os.path.isfile", Mock(return_value=True) ), patch("homeassistant.components.webostv.open", m_open, create=True), patch( "homeassistant.components.webostv.db.create_engine", side_effect=create_memory_sqlite_engine, ): await setup_legacy_component(hass) assert "imported from YAML config" in caplog.text assert is_entity_unique_id_updated(hass)
1,719
def test_simplest_numbers_generator(test): """To test the simplest_numbers_generator, use: test_simplest_numbers_generator("for") -- to see the generator behaviour on for loop test_simplest_numbers_generator("next") -- to see the generator behaviour on next() call """ print_header("Testing simplest_numbers_generator on {}".format(test), "#", 50) # create num_gen generator num_gen = simplest_numbers_generator() # print( num_gen.__dir__() ) if test == "for": for i in num_gen: print(i) elif test == "next": # ask the num_gen for 2 values: print( next(num_gen) ) print( next(num_gen) ) # ask num_gen for more values that it can yield print( next(num_gen) )
1,720
def main(session): """ Parse command line arguments, run recordData and write the results into a csv file. """ # Get the services ALMemory and ALMotion. memory_service = session.service("ALMemory") motion_service = session.service("ALMotion") # Set stiffness on for Head motors motion_service.setStiffnesses("Head", 1.0) # Will go to 1.0 then 0 radian in two seconds motion_service.angleInterpolation( ["HeadYaw"], [1.0, 0.0], [1 , 2], False, _async=True ) data = recordData(memory_service) # Gently set stiff off for Head motors motion_service.setStiffnesses("Head", 0.0) output = os.path.abspath("record.csv") with open(output, "w") as fp: for line in data: fp.write("; ".join(str(x) for x in line)) fp.write("\n") print "Results written to", output
1,721
def startup(): """ Starts everything up """ settings = { 'telegram_token': os.environ.get('TELEGRAM_TOKEN'), 'telegram_chat_id': os.environ.get('TELEGRAM_CHAT_ID'), 'gotify_url': os.environ.get('GOTIFY_URL'), 'gotify_token': os.environ.get('GOTIFY_TOKEN'), 'port': int(os.environ.get('PORT', '8899')), 'host': os.environ.get('ADDRESS', '*'), 'telegram_template': os.environ.get('TELEGRAM_TEMPLATE', 'html.j2'), 'gotify_template': os.environ.get('GOTIFY_TEMPLATE', 'markdown.md.j2'), 'null_template': os.environ.get('NULL_TEMPLATE', 'text.j2'), 'exclude_labels': os.environ.get('EXCLUDE_LABELS'), 'notifiers': [], } if settings['telegram_token'] and settings['telegram_chat_id']: settings['notifiers'].append('telegram') if settings['gotify_url'] and settings['gotify_token']: settings['notifiers'].append('gotify') log.info(f"Starting {__package__} {version}, listening on {settings['host']}:{settings['port']}") return settings
1,722
def as_yaml(config: Dict[str, Any], **yaml_args: Any) -> str: """Use PyYAML library to write YAML file""" return yaml.dump(config, **yaml_args)
1,723
def retrieve(filen,start,end): """Retrieve a block of text from a file. Given the name of a file 'filen' and a pair of start and end line numbers, extract and return the text from the file. This uses the linecache module - beware of problems with consuming too much memory if the cache isn't cleared.""" text = "" # Check for consistency and validity of lines if start < 0 and end < 0 or end < start: return "" # Fetch from a file if possible if os.path.isfile(filen): try: for i in range(start,end+1): text = text+str(linecache.getline(filen,i)) return text except Exception: print "Exception raised in retrieve method:" print "\tSource file = \""+str(filen)+"\"" print "\tStart line = "+str(start) print "\tEnd line = "+str(end) print "\tCurrent line = "+str(i) raise # Otherwise return nothing return ""
1,724
def test_file_groups_multiple_levels_nested_work_on_and_protect_dirs_with_pattern_and_debug(duplicates_dir, capsys): """Multiple protect dirs Protect: ki1 -> 6 ki1/df -> 3 ki1/df/ki12 -> 4 ki1/df/ki13 -> 4 ki1/df/ki13/ki14 -> 4 df2 -> 3 total: 24 Work_On: ki1/df -> 4 ki1/df/ki13/df12 -> 4 df2 -> 4 total: 12 """ kargs = ["ki1", "ki1/df/ki12", "ki1/df/ki13", "ki1/df/ki13/ki14"] dargs = ["df2", "ki1/df", "ki1/df/ki13/df12"] # Exclude from protext filenames where the 'stem' ends with 4 or 1 # Include in work_on filenames where the 'stem' ends with 1 with FGC(FileGroups(kargs, dargs, protect_exclude=re.compile(r'.*[41](\..*)?$'), work_include=re.compile(r'.*1(\..*)?$'), debug=True), duplicates_dir) as ck: assert ck.ckfl( 'must_protect.files', 'ki1/df/ki12/f12', 'ki1/df/ki12/f22', 'ki1/df/ki12/f512', 'ki1/df/ki13/f12', 'ki1/df/ki13/f22', 'ki1/df/ki13/ki14/f12', 'ki1/df/ki13/ki14/f22', 'ki1/df/ki13/ki14/fffff52.txt', 'ki1/f12', 'ki1/f22', 'ki1/f512') assert ck.ckfl( 'may_work_on.files', 'df2/f11', 'df2/f21', 'df2/f41', 'ki1/df/f11', 'ki1/df/f21', 'ki1/df/f31', 'ki1/df/f41', 'ki1/df/ki13/df12/f11', 'ki1/df/ki13/df12/f21') ck.fg.stats() out, _ = capsys.readouterr() assert 'collected protect_directories:' in out assert 'collected protect_directory_symlinks:' in out assert 'collected work_on_directories:' in out assert 'collected work_on_directory_symlinks:' in out assert 'collected must_protect_files:' in out assert 'collected must_protect_symlinks:' in out assert 'collected may_work_on_files:' in out assert 'collected may_work_on_symlinks:' in out pytest.xfail('TODO: directory counts')
1,725
def assert_equal(actual: numpy.bool_, desired: numpy.ndarray): """ usage.dask: 1 """ ...
1,726
def L1_Charbonnier_loss(predict, real): """ 损失函数 Args: predict: 预测结果 real: 真实结果 Returns: 损失代价 """ eps = 1e-6 diff = tf.add(predict, -real) error = tf.sqrt(diff * diff + eps) loss = tf.reduce_mean(error) return loss
1,727
def correction_byte_table_h() -> dict[int, int]: """Table of the number of correction bytes per block for the correction level H. Returns: dict[int, int]: Dictionary of the form {version: number of correction bytes} """ table = { 1: 17, 2: 28, 3: 22, 4: 16, 5: 22, 6: 28, 7: 26, 8: 26, 9: 24, 10: 28, 11: 24, 12: 28, 13: 22, 14: 24, 15: 24, 16: 30, 17: 28, 18: 28, 19: 26, 20: 28, 21: 30, 22: 24, 23: 30, 24: 30, 25: 30, 26: 30, 27: 30, 28: 30, 29: 30, 30: 30, 31: 30, 32: 30, 33: 30, 34: 30, 35: 30, 36: 30, 37: 30, 38: 30, 39: 30, 40: 30 } return table
1,728
def stash_rename(node_id, new_name): """Renames a node.""" return stash_invoke('rename', node_id, new_name)
1,729
def _xor(cpu_context: ProcessorContext, instruction: Instruction): """ XOR """ operands = instruction.operands opvalue1 = operands[0].value opvalue2 = operands[1].value width = get_max_operand_size(operands) result = opvalue1 ^ opvalue2 cpu_context.registers.cf = 0 cpu_context.registers.zf = int(result == 0) cpu_context.registers.sf = utils.sign_bit(result, width) cpu_context.registers.of = 0 cpu_context.registers.pf = get_parity(result) if cpu_context.emulator.branch_tracking: cpu_context.jcccontext.update_flag_opnds(["cf", "zf", "sf", "of", "pf"], operands) logger.debug("0x%X ^ 0x%X = 0x%X", opvalue1, opvalue2, result) operands[0].value = result
1,730
def get_fake_value(attr): # attr = (name, type, [dim, [dtype]]) """ returns default value for a given attribute based on description.py """ if attr[1] == pq.Quantity or attr[1] == np.ndarray: size = [] for i in range(int(attr[2])): size.append(np.random.randint(100) + 1) to_set = np.random.random(size) * pq.millisecond # let it be ms if attr[0] == 't_start': to_set = 0.0 * pq.millisecond if attr[0] == 't_stop': to_set = 1.0 * pq.millisecond if attr[0] == 'sampling_rate': to_set = 10000.0 * pq.Hz if attr[1] == np.ndarray: to_set = np.array(to_set, dtype=attr[3]) if attr[1] == str: to_set = str(np.random.randint(100000)) if attr[1] == int: to_set = np.random.randint(100) if attr[1] == datetime: to_set = datetime.now() return to_set
1,731
def find_x(old_time,omega,new_time): """ Compute x at the beginning of new time array. """ interp_omega=spline(old_time,omega) x=interp_omega(new_time[0])**(2./3) return x
1,732
def _platformio_library_impl(ctx): """Collects all transitive dependencies and emits the zip output. Outputs a zip file containing the library in the directory structure expected by PlatformIO. Args: ctx: The Skylark context. """ name = ctx.label.name # Copy the header file to the desired destination. header_file = ctx.actions.declare_file( _HEADER_FILENAME.format(dirname=name, filename=name)) inputs = [ctx.file.hdr] outputs = [header_file] commands = [_COPY_COMMAND.format( source=ctx.file.hdr.path, destination=header_file.path)] # Copy all the additional header and source files. for additional_files in [ctx.attr.add_hdrs, ctx.attr.add_srcs]: for target in additional_files: if len(target.files.to_list()) != 1: fail("each target listed under add_hdrs or add_srcs must expand to " + "exactly one file, this expands to %d: %s" % (len(target.files), target.files)) # The name of the label is the relative path to the file, this enables us # to prepend "lib/" to the path. For PlatformIO, all the library files # must be under lib/... additional_file_name = target.label.name additional_file_source = [f for f in target.files.to_list()][0] additional_file_destination = ctx.actions.declare_file( _ADDITIONAL_FILENAME.format(dirname=name, filename=additional_file_name)) inputs.append(additional_file_source) outputs.append(additional_file_destination) commands.append(_COPY_COMMAND.format( source=additional_file_source.path, destination=additional_file_destination.path)) # The src argument is optional, some C++ libraries might only have the header. if ctx.attr.src != None: source_file = ctx.actions.declare_file( _SOURCE_FILENAME.format(dirname=name, filename=name)) inputs.append(ctx.file.src) outputs.append(source_file) commands.append(_COPY_COMMAND.format( source=ctx.file.src.path, destination=source_file.path)) # Zip the entire content of the library folder. outputs.append(ctx.outputs.zip) commands.append(_ZIP_COMMAND.format( output_dir=ctx.outputs.zip.dirname, zip_filename=ctx.outputs.zip.basename)) ctx.actions.run_shell( inputs=inputs, outputs=outputs, command="\n".join(commands), ) # Collect the zip files produced by all transitive dependancies. transitive_zip_files=depset([ctx.outputs.zip]) for dep in ctx.attr.deps: transitive_zip_files = depset(transitive=[ transitive_zip_files, dep.transitive_zip_files ]) return struct( transitive_zip_files=transitive_zip_files, )
1,733
def repeat_interleave(x, arg): """Use numpy to implement repeat operations""" return paddle.to_tensor(x.numpy().repeat(arg))
1,734
def quantize_arr(arr, min_val=None, max_val=None, dtype=np.uint8): """Quantization based on real_value = scale * (quantized_value - zero_point). """ if (min_val is None) | (max_val is None): min_val, max_val = np.min(arr), np.max(arr) scale, zero_point = choose_quant_params(min_val, max_val, dtype=dtype) transformed_arr = zero_point + arr / scale # print(transformed_arr) if dtype == np.uint8: clamped_arr = np.clip(transformed_arr, 0, 255) quantized = clamped_arr.astype(np.uint8) elif dtype == np.uint32: clamped_arr = np.clip(transformed_arr, 0, 2 ** 31) quantized = clamped_arr.astype(np.uint32) else: raise ValueError('dtype={} is not supported'.format(dtype)) # print(clamped_arr) min_val = min_val.astype(np.float32) max_val = max_val.astype(np.float32) return quantized, min_val, max_val
1,735
def EST_NOISE(images): """Implementation of EST_NOISE in Chapter 2 of Trucco and Verri.""" num = images.shape[0] m_e_bar = sum(images)/num m_sigma = np.sqrt(sum((images - m_e_bar)**2) / (num - 1)) return m_sigma
1,736
def continue_cad_funcionario(request): """ Continuação do Cadastro do Funcionário. """ usuario = request.user try: funcionario = Funcionario.objects.get(usuario=usuario) except Exception: raise Http404() if funcionario and request.method == "POST": form = FuncionarioForm(request.POST) if form.is_valid(): form.save() return redirect("funcionario") else: form = FuncionarioForm() return render(request, "continue_cad_funcionario.html", {"form": form}) # if request.method == "POST": # form = FuncionarioForm(request.POST) # if form.is_valid(): # #'nome', 'rua', 'cpf', 'rg', 'fone', 'bloqueado', 'usuario_fun' # nome = form.cleaned_data['nome'] # rua = form.cleaned_data['rua'] # cpf = form.cleaned_data['cpf'] # rg = form.cleaned_data['rg'] # fone = form.cleaned_data['fone'] # bloqueado = form.cleaned_data['bloqueado'] # usuario_fun = form.cleaned_data['usuario_fun'] # novo = Funcionario( # nome=nome, rua=rua, cpf=cpf, # rg=rg, fone=fone, bloqueado=bloqueado, # suario_fun=usuario_fun # ) # novo.save() # return redirect("funcionario") # else: # form = FuncionarioForm() # return render(request, "continue_cad_funcionario.html", {"form": form})
1,737
def remove_words(i_list, string): """ remove the input list of word from string i_list: list of words to be removed string: string on the operation to be performed """ regexStr = re.compile(r'\b%s\b' % r'\b|\b'.join(map(re.escape, i_list))) o_string = regexStr.sub("", string) return o_string
1,738
def save_user_time(): """ Creates a DateTime object with correct save time Checks if that save time is now """ save_time = datetime.utcnow().replace(hour=18, minute=0, second=0, microsecond=0) return (save_time == (datetime.utcnow() - timedelta(hours=4)))
1,739
def manage_rating_mails(request, orders_sent=[], template_name="manage/marketing/rating_mails.html"): """Displays the manage view for rating mails """ return render(request, template_name, {})
1,740
def cancel(request_url: str, wait: Optional[bool] = False, poll_interval: Optional[float] = STANDARD_POLLING_SLEEP_TIME, verbose: Optional[bool] = False) -> int: """ Cancel the request at the given URL. This method returns immediately by default since the API processes this request asynchronously. If you would prefer to wait for it to be completed, set the 'wait' parameter to True. You can adjust the polling time using the 'poll_interval' parameter. Args: request_url: the URL string of the request to be canceled wait: set to True to block until the cancellation request has been completed (may wait for several minutes) poll_interval: seconds to wait between polling calls, defaults to STANDARD_POLLING_SLEEP_TIME. verbose: if True then output poll times and other progress, defaults to False Returns: 1 on success Raises: pyaurorax.exceptions.AuroraXUnexpectedContentTypeException: unexpected error pyaurorax.exceptions.AuroraXUnauthorizedException: invalid API key for this operation """ # do request req = AuroraXRequest(method="delete", url=request_url, null_response=True) req.execute() # return immediately if we don't want to wait if (wait is False): return 1 # get status status = get_status(request_url) # wait for request to be cancelled while (status["search_result"]["data_uri"] is None and status["search_result"]["error_condition"] is False): time.sleep(poll_interval) if (verbose is True): print("[%s] Checking for cancellation status ..." % (datetime.datetime.now())) status = get_status(request_url) # return if (verbose is True): print("[%s] The request has been cancelled" % (datetime.datetime.now())) return 1
1,741
def main(): """ TODO: To find the best match of DNA similarity. """ long_sequence = input('Please give me a DNA sequence to search: ') short_sequence = input('What DNA sequence would you like to match? ') best_match = find_match(short_sequence, long_sequence) print('The best match is '+str(best_match))
1,742
def set_jit_fusion_options(): """Set PyTorch JIT layer fusion options.""" # set flags if we are using the 21.10 container if torch.__version__ == "1.10.0a0+0aef44c": # nvfuser torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(True) torch._C._debug_set_autodiff_subgraph_inlining(False)
1,743
def plot_train_progress(scores, img_title, save_path, show, names=None): """ A plotting function using the array of loss values saved while training. :param train_losses, dev_losses: losses saved during training :return: """ nrows, ncols = 2, 3 dx, dy = 2, 1 num_iter = len(scores[0]) xs = np.arange(start=1, stop=num_iter + 1, step=1) figsize = plt.figaspect(float(dy * nrows) / float(dx * ncols)) fig, axes = plt.subplots(nrows, ncols, figsize=figsize) fig.suptitle(img_title) for sc, ax, name in zip(scores, axes.flat, names): # Set label for the X axis ax.set_xlabel('EpochN', fontsize=12) if type(name) in [list, tuple]: # this should happen with loss plotting only # It means that scores are represented as an MxN Numpy array num_curves = sc.shape[1] for idx in range(num_curves): ax.plot(xs, sc[:, idx]) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.legend(name) # name is a list -> need to create a legend for this subplot ax.set_ylabel('Loss', fontsize=12) else: ax.plot(xs, sc) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_ylabel(name, fontsize=12) plt.legend(loc='best', fancybox=True, framealpha=0.5) pad = 0.05 # Padding around the edge of the figure xpad, ypad = dx * pad, dy * pad fig.tight_layout(pad=2, h_pad=xpad, w_pad=xpad) if save_path is not None: logger.debug("Saving the learning curve plot --> %s" % save_path) fig.savefig(save_path) if show: plt.show()
1,744
def selected_cases(self): """Get a list of all grid cases selected in the project tree Returns: A list of :class:`rips.generated.generated_classes.Case` """ case_infos = self._project_stub.GetSelectedCases(Empty()) cases = [] for case_info in case_infos.data: cases.append(self.case(case_info.id)) return cases
1,745
def create_whatsapp_group(org, subject): """ Creates a Whatsapp group using the subject """ result = requests.post( urljoin(org.engage_url, "v1/groups"), headers=build_turn_headers(org.engage_token), data=json.dumps({"subject": subject}), ) result.raise_for_status() return json.loads(result.content)["groups"][0]["id"]
1,746
def compute_MVBS_index_binning(ds_Sv, range_sample_num=100, ping_num=100): """Compute Mean Volume Backscattering Strength (MVBS) based on intervals of ``range_sample`` and ping number (``ping_num``) specified in index number. Output of this function differs from that of ``compute_MVBS``, which computes bin-averaged Sv according to intervals of range (``echo_range``) and ``ping_time`` specified in physical units. Parameters ---------- ds_Sv : xr.Dataset dataset containing ``Sv`` and ``echo_range`` [m] range_sample_num : int number of samples to average along the ``range_sample`` dimension, default to 100 ping_num : int number of pings to average, default to 100 Returns ------- A dataset containing bin-averaged Sv """ da_sv = 10 ** (ds_Sv["Sv"] / 10) # average should be done in linear domain da = 10 * np.log10( da_sv.coarsen(ping_time=ping_num, range_sample=range_sample_num, boundary="pad").mean( skipna=True ) ) # Attach attributes and coarsened echo_range da.name = "Sv" ds_MVBS = da.to_dataset() ds_MVBS.coords["range_sample"] = ( "range_sample", np.arange(ds_MVBS["range_sample"].size), {"long_name": "Along-range sample number, base 0"}, ) # reset range_sample to start from 0 ds_MVBS["echo_range"] = ( ds_Sv["echo_range"] .coarsen( # binned echo_range (use first value in each average bin) ping_time=ping_num, range_sample=range_sample_num, boundary="pad" ) .min(skipna=True) ) _set_MVBS_attrs(ds_MVBS) ds_MVBS["Sv"] = ds_MVBS["Sv"].assign_attrs( { "cell_methods": ( f"ping_time: mean (interval: {ping_num} pings " "comment: ping_time is the interval start) " f"range_sample: mean (interval: {range_sample_num} samples along range " "comment: range_sample is the interval start)" ), "comment": "MVBS binned on the basis of range_sample and ping number specified as index numbers", # noqa "binning_mode": "sample number", "range_sample_interval": f"{range_sample_num} samples along range", "ping_interval": f"{ping_num} pings", "actual_range": [ round(float(ds_MVBS["Sv"].min().values), 2), round(float(ds_MVBS["Sv"].max().values), 2), ], } ) prov_dict = echopype_prov_attrs(process_type="processing") prov_dict["processing_function"] = "preprocess.compute_MVBS_index_binning" ds_MVBS = ds_MVBS.assign_attrs(prov_dict) ds_MVBS["frequency_nominal"] = ds_Sv["frequency_nominal"] # re-attach frequency_nominal return ds_MVBS
1,747
def set_image_exposure_time(exp_time): """ Send the command to set the exposure time per frame to SAMI. Parameters ---------- exp_time (float) : the exposure time in seconds. Returns ------- message (string) : DONE if successful. """ message = send_command("dhe set obs.exptime {:f}".format(exp_time)) return message
1,748
def ping(host): """ Returns True if host (str) responds to a ping request. Remember that a host may not respond to a ping (ICMP) request even if the host name is valid. Base on https://bit.ly/2TmgeX2 but with pexpect :param str host: A host name or ip :return boolean: True if ping is replied correctly """ # Option for the number of packets as a function of param = '-n' if platform.system().lower() == 'windows' else '-c' # Building the command. Ex: "ping -c 1 example.com" command = ['ping', param, '1', host] return subprocess.call(command) == 0
1,749
def stack_exists(client, stack_name): """ Checks that stack was specified is existing """ cfn_stacks = client.list_stacks() for cfn_stack in cfn_stacks["StackSummaries"]: if cfn_stack['StackName'] == stack_name and "COMPLETE" in cfn_stack['StackStatus'] and "DELETE" not in cfn_stack['StackStatus']: return True return False
1,750
def endorsement_services(): """Return endorsement service list Loads all defined service modules unless settings specifies otherwise """ global ENDORSEMENT_SERVICES if ENDORSEMENT_SERVICES is None: ENDORSEMENT_SERVICES = _load_endorsement_services() return ENDORSEMENT_SERVICES
1,751
def test_set_initial_open_orders(): """ Check _set_initial_open_orders method for return of an empty dictionary. """ start_dt = pd.Timestamp('2017-10-05 08:00:00', tz=pytz.UTC) exchange = ExchangeMock() data_handler = DataHandlerMock() sb = SimulatedBroker(start_dt, exchange, data_handler) assert sb._set_initial_open_orders() == {}
1,752
def select(arrays, index): """ Index each array in a tuple of arrays. If the arrays tuple contains a ``None``, the entire tuple will be returned as is. Parameters ---------- arrays : tuple of arrays index : array An array of indices to select from arrays. Returns ------- indexed_arrays : tuple of arrays Examples -------- >>> import numpy as np >>> select((np.arange(5), np.arange(-3, 2, 1)), [1, 3]) (array([1, 3]), array([-2, 0])) >>> select((None, None, None, None), [1, 2]) (None, None, None, None) """ if arrays is None or any(i is None for i in arrays): return arrays return tuple(i.ravel()[index] for i in arrays)
1,753
def waypoint(waypoint_id): """view a book page""" wp = Waypoint.query.filter_by(id=waypoint_id).first() options = Option.query.filter_by(sourceWaypoint_id=waypoint_id) if wp is None: abort(404) return render_template('books/waypoint.html', book=wp.book_of, waypoint=wp, options=options)
1,754
def test_insert_requirement(client): """ Testing the method for posting information to insert a requirement on the csv file (synthetic data) """ specification = dict(specification_id='X1C2V3B7', product='OSLC SDK 7', project='OSLC-Project 7', title='OSLC RM Spec 7', description='The OSLC RM Specification needs to be awesome 7', source='Ian Altman', author='Frank', category='Customer Requirement', discipline='Software Development', revision='0', target_value='1', degree_of_fulfillment='0', status='Draft') response = client.post('oslc/rm/requirement', data=json.dumps(specification), content_type='application/json') assert response.status_code == 201 assert response.data == b'' response = client.delete('oslc/rm/requirement/X1C2V3B7', content_type='application/json') assert response.status_code == 200
1,755
def encode_big_endian_16(i): """Take an int and return big-endian bytes""" return encode_big_endian_32(i)[-2:]
1,756
def get_comments_from_fawm_page( url: str, username: str, password: str, ) -> List[Response]: """Extract comments from a given FAWM page.""" response = requests.get(url, auth=(username, password)) response.encoding = "UTF-8" html = response.text soup = BeautifulSoup(html, "html.parser") responses = [] # there are non-comments with the class "comment-item", so we need to narrow down for el in soup.find_all("li", {"class": "comment-item", "id": re.compile(r"c\d+")}): responses.append(get_response_from_li(url, el)) return responses
1,757
def send_message(service, user_id, message): """Send an email message. Args: service: Authorized Gmail API service instance. user_id: User's email address. The special value "me" can be used to indicate the authenticated user. message: Message to be sent. Returns: Sent Message. """ try: message = (service.users().messages().send(userId=user_id, body=message) .execute()) print ('Message Id: %s' % message['id']) return message except errors.HttpError, error: print ('An error occurred: %s' % error)
1,758
def get_supported_solvers(): """ Returns a list of solvers supported on this machine. :return: a list of SolverInterface sub-classes :list[SolverInterface]: """ return [sv for sv in builtin_solvers if sv.supported()]
1,759
def eff_satellite_testing_auto_end_dating(context): """ Define the structures and metadata to load effectivity satellites """ context.hashed_columns = { "STG_CUSTOMER_ORDER": { "CUSTOMER_ORDER_PK": ["CUSTOMER_ID", "ORDER_ID"], "CUSTOMER_PK": "CUSTOMER_ID", "ORDER_PK": "ORDER_ID" }, "STG_ORDER_CUSTOMER": { "ORDER_CUSTOMER_PK": ["CUSTOMER_ID", "ORDER_ID"], "CUSTOMER_PK": "CUSTOMER_ID", "ORDER_PK": "ORDER_ID" } } context.vault_structure_columns = { "LINK_CUSTOMER_ORDER": { "source_model": "STG_CUSTOMER_ORDER", "src_pk": "CUSTOMER_ORDER_PK", "src_fk": ["CUSTOMER_PK", "ORDER_PK"], "src_ldts": "LOAD_DATETIME", "src_source": "SOURCE" }, "LINK_ORDER_CUSTOMER": { "source_model": "STG_ORDER_CUSTOMER", "src_pk": "ORDER_CUSTOMER_PK", "src_fk": ["CUSTOMER_PK", "ORDER_PK"], "src_ldts": "LOAD_DATETIME", "src_source": "SOURCE" }, "EFF_SAT_CUSTOMER_ORDER": { "source_model": "STG_CUSTOMER_ORDER", "src_pk": "CUSTOMER_ORDER_PK", "src_dfk": ["CUSTOMER_PK"], "src_sfk": "ORDER_PK", "src_start_date": "START_DATE", "src_end_date": "END_DATE", "src_eff": "EFFECTIVE_FROM", "src_ldts": "LOAD_DATETIME", "src_source": "SOURCE" }, "EFF_SAT_ORDER_CUSTOMER": { "source_model": "STG_ORDER_CUSTOMER", "src_pk": "ORDER_CUSTOMER_PK", "src_dfk": ["ORDER_PK"], "src_sfk": "CUSTOMER_PK", "src_start_date": "START_DATE", "src_end_date": "END_DATE", "src_eff": "EFFECTIVE_FROM", "src_ldts": "LOAD_DATETIME", "src_source": "SOURCE" } } context.seed_config = { "RAW_STAGE_CUSTOMER_ORDER": { "+column_types": { "CUSTOMER_ID": "VARCHAR", "ORDER_ID": "VARCHAR", "START_DATE": "DATETIME", "END_DATE": "DATETIME", "EFFECTIVE_FROM": "DATETIME", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } }, "RAW_STAGE_ORDER_CUSTOMER": { "+column_types": { "CUSTOMER_ID": "VARCHAR", "ORDER_ID": "VARCHAR", "START_DATE": "DATETIME", "END_DATE": "DATETIME", "EFFECTIVE_FROM": "DATETIME", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } }, "LINK_CUSTOMER_ORDER": { "+column_types": { "CUSTOMER_ORDER_PK": "BINARY(16)", "CUSTOMER_PK": "BINARY(16)", "ORDER_PK": "BINARY(16)", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } }, "LINK_ORDER_CUSTOMER": { "+column_types": { "ORDER_CUSTOMER_PK": "BINARY(16)", "CUSTOMER_PK": "BINARY(16)", "ORDER_PK": "BINARY(16)", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } }, "EFF_SAT_CUSTOMER_ORDER": { "+column_types": { "CUSTOMER_ORDER_PK": "BINARY(16)", "CUSTOMER_PK": "BINARY(16)", "ORDER_PK": "BINARY(16)", "START_DATE": "DATETIME", "END_DATE": "DATETIME", "EFFECTIVE_FROM": "DATETIME", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } }, "EFF_SAT_ORDER_CUSTOMER": { "+column_types": { "ORDER_CUSTOMER_PK": "BINARY(16)", "CUSTOMER_PK": "BINARY(16)", "ORDER_PK": "BINARY(16)", "START_DATE": "DATETIME", "END_DATE": "DATETIME", "EFFECTIVE_FROM": "DATETIME", "LOAD_DATETIME": "DATETIME", "SOURCE": "VARCHAR" } } }
1,760
def _length_hint(obj): """Returns the length hint of an object.""" try: return len(obj) except (AttributeError, TypeError): try: get_hint = type(obj).__length_hint__ except AttributeError: return None try: hint = get_hint(obj) except TypeError: return None if hint is NotImplemented or \ not isinstance(hint, (int, long)) or \ hint < 0: return None return hint
1,761
def _folder_to_json(jdir, key_path=None, in_memory=True, ignore_prefix=('.', '_'), dic={}, parse_decimal=False): """ read in folder structure as json e.g. jdir sub_dir1 data.json sub_dir2 data.json _folder_to_json(jdir) => {'sub_dir1':{'data':{...}}, 'sub_dir2':{'data':{...}}} NB: json files are identified with .json extension """ key_path = [] if key_path is None else key_path if not hasattr(jdir, 'iterdir'): raise ValueError('jdir is not a path object; {}'.format(jdir)) key_found = False if key_path else True search_key = key_path[0] if len(key_path) > 0 else None for jsub in jdir.iterdir(): if jsub.is_file() and jsub.name.endswith('.json'): name, ext = os.path.splitext(jsub.name) if name == search_key or not key_path: key_found = True if key_path: data = to_dict(jsub, key_path[1:], in_memory, ignore_prefix, parse_decimal) if isinstance(data, dict): dic.update(data) else: dic.update({_Terminus(): data}) else: dic[name] = to_dict(jsub, key_path[1:], in_memory, ignore_prefix, parse_decimal) elif (jsub.is_dir() and not jsub.name.startswith(ignore_prefix) and (jsub.name == search_key or not key_path)): key_found = True if jsub.name in dic.keys(): raise IOError( 'directory has a sub-dir and file with same name: ' '{1} and {1}.json in {0}'.format(jdir, jsub.name)) if key_path: sub_d = dic else: dic[jsub.name] = {} sub_d = dic[jsub.name] _folder_to_json(jsub, key_path[1:], in_memory, ignore_prefix, sub_d, parse_decimal) if not key_found: raise KeyError('key not found: {0}'.format(search_key))
1,762
async def generate_images(queue, filenames): """Producer coroutine""" for filename in filenames: await queue.put(filename) print('All task requests sent')
1,763
def chimeric_data(): """Example containing spanning + junction reads from single fusion.""" return _build_chimeric_data( [('1', 300, 1, 'T2onc', 420, 1, 2, '100M2208p38M62S', '62M38S', 'R1'), ('1', 300, 1, 'T2onc', 420, 1, 1, '100M2208p52M48S', '48M52S', 'R2'), ('1', 301, 1, 'T2onc', 420, 1, 1, '100M2208p52M48S', '48M52S', 'R3'), ('1', 300, 1, 'T2onc', 421, 1, 1, '100M2208p52M48S', '48M52S', 'R4'), ('1', 280, 1, 'T2onc', 435, 1, -1, '100M', '97M3S', 'S1'), ('1', 270, 1, 'T2onc', 445, 1, -1, '100M', '98M2S', 'S2'), ('1', 275, 1, 'T2onc', 435, 1, -1, '100M', '98M2S', 'S3')])
1,764
def _get_merge_for_alias_key(database, key): """Return the Alias record of the merged player. Allow for value.merge on the record with key srkey being any value. Return the record if value.merge is None True or False. Otherwise assume value.merge is integer and use it to retreive and return a record. return None if get_alias() returns None. """ r = resultsrecord.get_alias(database, key) if r is None: return elif r.value.merge is None: return r elif r.value.merge is True: return r elif r.value.merge is False: return r r = resultsrecord.get_alias(database, r.value.merge) if r is None: return return r
1,765
def saveusers(argv): """Save stdin to users.plist.""" try: plist = plistlib.readPlist(sys.stdin) except: print >>sys.stderr, "Malformed users.plist" return 2 os.unlink(users_path) plistlib.writePlist(plist, users_path) return 0
1,766
def get_bucket(self): """ Documentation: --- Description: Use bucket name to return a single S3 bucket object. --- Returns: bucket : S3 bucket S3 bucket object """ # return # 6 dictionary containing Name tag / EC2 instance object buckets = self.get_buckets() # check that there is an instance with that name assert self.bucket_name in self.get_bucket_names(), "\nNo S3 bucket with that name.\n" # filter instances by instance_name bucket = buckets[self.bucket_name] return bucket
1,767
def set_emoji_author(apps: StateApps, schema_editor: DatabaseSchemaEditor) -> None: """ This migration establishes the invariant that all RealmEmoji objects have .author set and queues events for reuploading all RealmEmoji. """ RealmEmoji = apps.get_model("zerver", "RealmEmoji") Realm = apps.get_model("zerver", "Realm") UserProfile = apps.get_model("zerver", "UserProfile") ROLE_REALM_OWNER = 100 realm_emoji_to_update = [] for realm_emoji in RealmEmoji.objects.all(): if realm_emoji.author_id is None: user_profile = ( UserProfile.objects.filter( realm_id=realm_emoji.realm_id, is_active=True, role=ROLE_REALM_OWNER ) .order_by("id") .first() ) realm_emoji.author_id = user_profile.id realm_emoji_to_update.append(realm_emoji) RealmEmoji.objects.bulk_update(realm_emoji_to_update, ["author_id"]) if settings.TEST_SUITE: # There are no custom emoji in the test suite data set, and # the below code won't work because RabbitMQ isn't enabled for # the test suite. return for realm_id in Realm.objects.order_by("id").values_list("id", flat=True): event = { "type": "reupload_realm_emoji", "realm_id": realm_id, } queue_json_publish("deferred_work", event)
1,768
def requestShutdown(programPath, reason): """ Log the shutdown reason and call the shutdown-requesting program. In the case the service is spawned by launchd (or equivalent), if our service decides it needs to shut itself down, because of a misconfiguration, for example, we can't just exit. We may need to go through the system machinery to unload our job, manage reverse proxies, update admin UI, etc. Therefore you can configure the ServiceDisablingProgram plist key to point to a program to run which will stop our service. @param programPath: the full path to a program to call (with no args) @type programPath: C{str} @param reason: a shutdown reason to log @type reason: C{str} """ log.error("Shutting down Calendar and Contacts server") log.error(reason) Popen( args=[config.ServiceDisablingProgram], stdout=PIPE, stderr=PIPE, ).communicate()
1,769
def euclidean_distance(x, y, weight=None): """Computes the Euclidean distance between two time series. If the time series do not have the same length, an interpolation is performed. Parameters ---------- x : nd-array Time series x. y : nd-array Time series y. weight: nd-array (Default: None) query weight values. Returns ------- float Euclidean distance value. """ p = 2 if len(x) != len(y): x, y = interpolation(x, y) if weight is None: ed = np.linalg.norm(x - y, p) else: if len(np.shape(x)) > 1: distance = _lnorm_multidimensional(x, y, weight, p=p) else: distance = _lnorm_unidimensional(x, y, weight, p=p) ed = np.sum(distance) return ed
1,770
def path(artifactory_server, artifactory_auth): """ArtifactoryPath with defined server URL and authentication""" def f(uri): return artifactory.ArtifactoryPath( artifactory_server + uri, auth=artifactory_auth ) return f
1,771
def compile_gif(): """Сделать кино""" utils.compile_gif('./current/map_thumbnails/')
1,772
def get_figure_of_dataframe_contrasting_prof_with_other_profs(dict_cursor, ax, instructorFullName, cID, campus): """ Plot the prof vs other profs DataFrame in python. """ df = __get_dataframe_by_contrasting_prof_with_other_profs(dict_cursor, instructorFullName, cID, campus) __get_figure_by_dataframe(df, ax, title="Prof {} vs other profs who taught {}".format(instructorFullName, cID))
1,773
def get_outmost_polygon_boundary(img): """ Given a mask image with the mask describes the overlapping region of two images, get the outmost contour of this region. """ mask = get_mask(img) mask = cv2.dilate(mask, np.ones((2, 2), np.uint8), iterations=2) cnts, hierarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:] # get the contour with largest aera C = sorted(cnts, key=lambda x: cv2.contourArea(x), reverse=True)[0] # polygon approximation polygon = cv2.approxPolyDP(C, 0.009 * cv2.arcLength(C, True), True) return polygon
1,774
def update_uploaded_file_with_log(project, path_to_log_file): """Update file details that weren't properly uploaded to db from cli log""" import botocore from dds_web.database import models from dds_web import db from dds_web.api.api_s3_connector import ApiS3Connector import json proj_in_db = models.Project.query.filter_by(public_id=project).one_or_none() assert proj_in_db with open(path_to_log_file, "r") as f: log = json.load(f) errors = {} files_added = [] for file, vals in log.items(): status = vals.get("status") if not status or not status.get("failed_op") == "add_file_db": continue with ApiS3Connector(project=proj_in_db) as s3conn: try: _ = s3conn.resource.meta.client.head_object( Bucket=s3conn.project.bucket, Key=vals["path_remote"] ) except botocore.client.ClientError as err: if err.response["Error"]["Code"] == "404": errors[file] = {"error": "File not found in S3", "traceback": err.__traceback__} else: file_object = models.File.query.filter( sqlalchemy.and_( models.File.name == sqlalchemy.func.binary(file), models.File.project_id == proj_in_db.id, ) ).first() if file_object: errors[file] = {"error": "File already in database."} else: new_file = models.File( name=file, name_in_bucket=vals["path_remote"], subpath=vals["subpath"], project_id=proj_in_db.id, size_original=vals["size_raw"], size_stored=vals["size_processed"], compressed=not vals["compressed"], public_key=vals["public_key"], salt=vals["salt"], checksum=vals["checksum"], ) new_version = models.Version( size_stored=new_file.size_stored, time_uploaded=datetime.datetime.utcnow() ) proj_in_db.file_versions.append(new_version) proj_in_db.files.append(new_file) new_file.versions.append(new_version) db.session.add(new_file) files_added.append(new_file) db.session.commit() flask.current_app.logger.info(f"Files added: {files_added}") flask.current_app.logger.info(f"Errors while adding files: {errors}")
1,775
def on_save_handler(model_class, instance, created): """Hash password on creation/save.""" # If password changed then it won't start with hash's method prefix is_password_changed = not instance.password.startswith('pbkdf2:sha256') if created or is_password_changed: instance.password = generate_password_hash(instance.password) is_api_key_changed = not instance.api_key.startswith('pbkdf2:sha256') if created or is_api_key_changed: if not instance.api_key: instance.api_key = model_class.random_password() instance.api_key = generate_password_hash(instance.api_key)
1,776
def check_ddp_wrapped(model: nn.Module) -> bool: """ Checks whether model is wrapped with DataParallel/DistributedDataParallel. """ parallel_wrappers = nn.DataParallel, nn.parallel.DistributedDataParallel # Check whether Apex is installed and if it is, # add Apex's DistributedDataParallel to list of checked types try: from apex.parallel import DistributedDataParallel as apex_DDP parallel_wrappers = parallel_wrappers + (apex_DDP,) except ImportError: pass return isinstance(model, parallel_wrappers)
1,777
def adminRecords(request): """ 管理租赁记录 :param request: :return: html page """ token = request.COOKIES.get('admintoken') if token is None: return redirect('/adminLogin/') result = MysqlConnector.get_one('YachtClub', 'select adminname from admincookies where token=%s', token) if result is None: return redirect('/adminLogin/') return render(request, 'adminRecords.html')
1,778
def _make_fold(draw): """ Helper strategy for `test_line_fold` case. The shape of the content will be the same every time: a b c But the chars and size of indent, plus trailing whitespace on each line and number of line breaks will all be fuzzed. """ return ( draw(make_interspace(symbol_a, 0)), draw(make_interspace(symbol_b, 1)), draw(make_interspace(symbol_c, 1)), )
1,779
def temporary_namespace(locals_ref, keep: T.List[str] = []): """Temporary Namespace within ``with`` statement. 1. copies current namespace from `locals_ref` 2. Enters ``with`` statement 3. restores original namespace except those specified in `keep` Parameters ---------- module : module ``sys.modules[__name__]`` of module calling from. .. todo:: not need to pass any module information. infer. keep : list, optional list of (str) variable names to keep. Yields ------ locals_ref : locals for accessing namespace Warnings -------- Does NOT work within functions. """ original_namespace = locals_ref.copy() try: yield locals_ref finally: # difference of current and old namespace # without the keep keys drop_keys = ( set(locals_ref.keys()) .difference(original_namespace.keys()) .difference(keep) ) # kept values keep_dict = {k: locals_ref[k] for k in keep} # print("drop_keys", drop_keys, "keep_dict", keep_dict) # Restoring Namespace original_namespace.update(keep_dict) # add keep values to original locals_ref.update(original_namespace) # restore original (+kept) for key in drop_keys: # drop unkept context-specific values locals_ref.pop(key) # /try
1,780
def get_user_jwt() -> str: """ Returns: str: The JWT token of the user """ login_data = check_login() if not login_data: token = requests.get( 'https://formee-auth.hackersreboot.tech/visitor').json()['token'] return token if login_data: token = requests.get('https://formee-auth.hackersreboot.tech/', json={ 'username': login_data['username'], 'password': login_data['password']}).json()['token'] return token
1,781
def auth(driver, cred): """ Method for automating login procedure """ try: ele_un = driver.find_element_by_xpath("//input[@id='ft_un']") ele_un.send_keys(cred['username']) ele_pd = driver.find_element_by_xpath("//input[@id='ft_pd']") ele_pd.send_keys(cred['password']) driver.find_element_by_xpath("//input[@type='submit']").click() except NoSuchElementException: print('Already active or No internet connection')
1,782
def nostdout(): """Kill standart output. Example ------- >> with nostdout(): raw = mne.io.Raw(fname) """ # -- Works both in python2 and python3 -- # try: from io import StringIO except ImportError: from io import StringIO # --------------------------------------- # save_stdout = sys.stdout sys.stdout = StringIO() yield sys.stdout = save_stdout
1,783
def site_pressure(dset): """Get atmospheric pressure from local site measurements If local atmospheric pressure measurements on a site are not available an alternative model given in configuration file is used to determine atmospheric pressure. TODO: So far only gridded VMF1 model is used, if local pressure data are not available. Which alternative is used, should be decided via the configuration file. How to check after an alternative model in configuration file? model_list = config.tech[MODEL].meteorological_data.list??? Args: dset (Dataset): A Dataset containing model data. Returns: numpy.ndarray: Atmospheric pressure for each observation in [hPa] """ pressure = np.zeros(dset.num_obs) i_given = np.zeros(dset.num_obs, dtype=bool) if "pressure" + (dset.default_field_suffix or "") in dset.fields: i_given[np.logical_not(np.isnan(dset.pressure))] = True pressure[i_given] = dset.pressure[i_given] i_missing = np.logical_not(i_given) if i_missing.any(): pressure[i_missing] = vmf1_gridded_pressure(dset)[i_missing] return pressure
1,784
def write_clean_po(filename, catalog): """Writes out a .po file in a canonical way, to minimize spurious diffs.""" catalog.creation_date = datetime.datetime(2000, 1, 1, 0, 0, 0) file = open(filename, 'w') pofile.write_po(file, catalog, no_location=True, sort_output=True, ignore_obsolete=True) file.close()
1,785
def add_gradient_penalty(critic, C_input_gp, C_input_fake): """Helper Function: Add gradient penalty to enforce Lipschitz continuity Interpolates = Real - alpha * ( Fake - Real ) Parameters ---------- critic : tf.Sequential Critic neural network C_input_gp : np.matrix Critic input for gradient penalty. Mean values of all similar samples provided by the Sampler. C_input_fake : tf.Tensor Critic input Generator(X) Returns ------- tf.tensor(dtype=tf.Float64) Gradient Penalty """ alpha = tf.random.uniform( shape=[1, int(C_input_fake.shape[1])], minval=0.0, maxval=1.0, dtype=tf.float64 ) interpolates = C_input_gp + alpha * (C_input_fake - C_input_gp) disc_interpolates = critic(interpolates) gradients = tf.gradients(disc_interpolates, [interpolates])[0] slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients))) return tf.reduce_mean((slopes - 1) ** 2)
1,786
def parse_airomon_datetime(airomon_dt: str) -> datetime: """Parse string used by airomon and also make timezone aware.""" aileen_tz = pytz.timezone(settings.TIME_ZONE) try: dt: datetime = datetime.strptime(airomon_dt, "%Y-%m-%d %H:%M:%S") dt = dt.astimezone(aileen_tz) except ValueError: print( "%s Warning: could not parse datetime %s, using 1-1-1970 for this one!" % (settings.TERM_LBL, airomon_dt) ) dt = datetime(1970, 1, 1, 1, 1, 1, tzinfo=aileen_tz) return dt
1,787
def i2nm(i): """ Return the n and m orders of the i'th zernike polynomial ========= == == == == == == == == == == == == == == == === i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... n-order 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... m-order 0 -1 1 -2 0 2 -3 -1 1 3 -4 -2 0 2 4 ... ========= == == == == == == == == == == == == == == == === """ ia = array(i) n = (1 + (sqrt(8 * (ia) + 1) - 3) / 2).astype(int) ni = n * (n + 1) / 2 m = -n + 2 * (i - ni) return n, m
1,788
def update_ftov_msgs( ftov_msgs: jnp.ndarray, updates: Dict[Any, jnp.ndarray], fg_state: FactorGraphState ) -> jnp.ndarray: """Function to update ftov_msgs. Args: ftov_msgs: A flat jnp array containing ftov_msgs. updates: A dictionary containing updates for ftov_msgs fg_state: Factor graph state Returns: A flat jnp array containing updated ftov_msgs. Raises: ValueError if: (1) provided ftov_msgs shape does not match the expected ftov_msgs shape. (2) provided name is not valid for ftov_msgs updates. """ for names in updates: data = updates[names] if names in fg_state.variable_group.names: variable = fg_state.variable_group[names] if data.shape != (variable.num_states,): raise ValueError( f"Given belief shape {data.shape} does not match expected " f"shape {(variable.num_states,)} for variable {names}." ) var_states_for_edges = np.concatenate( [ wiring_by_type.var_states_for_edges for wiring_by_type in fg_state.wiring.values() ] ) starts = np.nonzero( var_states_for_edges == fg_state.vars_to_starts[variable] )[0] for start in starts: ftov_msgs = ftov_msgs.at[start : start + variable.num_states].set( data / starts.shape[0] ) else: raise ValueError( "Invalid names for setting messages. " "Supported names include a tuple of length 2 with factor " "and variable names for directly setting factor to variable " "messages, or a valid variable name for spreading expected " "beliefs at a variable" ) return ftov_msgs
1,789
def dict_list_add(d, k, v): """ Convenience function to create empty list in dictionary if not already present under that key """ if k in d: d[k].append(v) else: d[k] = [v]
1,790
def normalize_features( current: np.ndarray, previous: Optional[np.ndarray], normalize_samples: int, method: str = NORM_METHODS.MEAN.value, clip: bool = False, ) -> tuple[np.ndarray, np.ndarray]: """Normalize features with respect to the past number of normalize_samples. Parameters ---------- current : numpy array current features to normalize. previous : numpy array or None previous features, not normalized. Used for normalization of current features. normalize_samples : int number of past samples considered for normalization method : str | default is 'mean' data is normalized via subtraction of the 'mean' or 'median' and subsequent division by the 'mean' or 'median'. For z-scoring enter 'zscore'. clip : int | float, optional value at which to clip on the lower and upper end after normalization. Useful for artifact rejection and handling of outliers. Returns ------- current : numpy array normalized current features previous : numpy array previous features, not normalized. Raises ------ ValueError returned if method is not 'mean', 'median' or 'zscore' """ if previous is None: return np.zeros_like(current), current previous = np.vstack((previous, current)) previous = _transform_previous( previous=previous, normalize_samples=normalize_samples ) current, previous = _normalize_and_clip( current=current, previous=previous, method=method, clip=clip, description="feature", ) return current, previous
1,791
def anim(filename, rows: int, cols: int , frame_duration: float = 0.1, loop=True) -> Animation: """Create Animation object from image of regularly arranged subimages. +filename+ Name of file in resource directory of image of subimages regularly arranged over +rows+ rows and +cols+ columns. +frame_duration+ Seconds each frame of animation should be displayed. """ img = pyglet.resource.image(filename) image_grid = pyglet.image.ImageGrid(img, rows, cols) animation = image_grid.get_animation(frame_duration, True) centre_animation(animation) return animation
1,792
def show_umbrella_plot(profileFilename, histogramFilename): """Muestra el gráfico del perfil y los histogramas en el mismo gráfico. Útil para determinar si al cálculo le faltan ventanas.""" figure = plt.figure() histogramsData = parseXVG(histogramFilename) histoPlot = figure.add_subplot(111) for histogramNum in range(1, len(histogramsData)): histoPlot.fill_between( histogramsData[0], 0, histogramsData[histogramNum], color="grey", alpha=0.35 ) histoPlot.set_xlabel("Distance from bilayer center [nm]") histoPlot.set_ylabel("Population") profileData = parseXVG(profileFilename) profilePlot = figure.add_subplot(111, sharex=histoPlot, frameon=False) profilePlot.plot(profileData[0], profileData[1]) profilePlot.yaxis.tick_right() profilePlot.yaxis.set_label_position("right") profilePlot.set_ylabel("Mean force potential [kj/mol]") profilePlot.grid() plt.show()
1,793
def process_summary(article): """Ensures summaries are not cut off. Also inserts mathjax script so that math will be rendered""" summary = article._get_summary() summary_parsed = BeautifulSoup(summary, 'html.parser') math = summary_parsed.find_all(class_='math') if len(math) > 0: last_math_text = math[-1].get_text() if len(last_math_text) > 3 and last_math_text[-3:] == '...': content_parsed = BeautifulSoup(article._content, 'html.parser') full_text = content_parsed.find_all(class_='math')[len(math)-1].get_text() math[-1].string = "%s ..." % full_text summary = summary_parsed.decode() article._summary = "%s<script type='text/javascript'>%s</script>" % (summary, process_summary.mathjax_script)
1,794
def filter_factory(global_conf, **local_conf): """Standard filter factory to use the middleware with paste.deploy""" register_swift_info('vertigo') conf = global_conf.copy() conf.update(local_conf) vertigo_conf = dict() vertigo_conf['devices'] = conf.get('devices', '/srv/node') vertigo_conf['execution_server'] = conf.get('execution_server') vertigo_conf['mc_timeout'] = conf.get('mc_timeout', 5) vertigo_conf['mc_pipe'] = conf.get('mc_pipe', 'vertigo_pipe') # vertigo_conf['api_pipe'] = conf.get('mc_pipe', 'api_pipe') vertigo_conf['metadata_visibility'] = conf.get('metadata_visibility', True) vertigo_conf['mc_dir'] = conf.get('mc_dir', '/home/docker_device/vertigo/scopes') vertigo_conf['cache_dir'] = conf.get('cache_dir', '/home/docker_device/cache/scopes') vertigo_conf['mc_container'] = conf.get('mc_container', 'microcontroller') vertigo_conf['mc_dependency'] = conf.get('mc_dependency', 'dependency') ''' Load storlet parameters ''' configParser = RawConfigParser() configParser.read(conf.get('__file__')) storlet_parameters = configParser.items('filter:storlet_handler') for key, val in storlet_parameters: vertigo_conf[key] = val """ Load Storlets Gateway configuration """ configParser = RawConfigParser() configParser.read(vertigo_conf['storlet_gateway_conf']) additional_items = configParser.items("DEFAULT") for key, val in additional_items: vertigo_conf[key] = val """ Load Storlets Gateway class """ module_name = vertigo_conf.get('storlet_gateway_module', 'stub') gateway_class = load_gateway(module_name) vertigo_conf['storlets_gateway_module'] = gateway_class """ Register Lua script to retrieve policies in a single redis call """ vertigo_conf['redis_host'] = conf.get('redis_host', 'controller') vertigo_conf['redis_port'] = int(conf.get('redis_port', 6379)) vertigo_conf['redis_db'] = int(conf.get('redis_db', 0)) if vertigo_conf['execution_server'] == 'proxy': r = redis.StrictRedis(vertigo_conf['redis_host'], vertigo_conf['redis_port'], vertigo_conf['redis_db']) lua = """ local t = {} if redis.call('EXISTS', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]..':'..ARGV[3])==1 then t = redis.call('HGETALL', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]..':'..ARGV[3]) elseif redis.call('EXISTS', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2])==1 then t = redis.call('HGETALL', 'mc_pipeline:'..ARGV[1]..':'..ARGV[2]) end return t""" lua_sha = r.script_load(lua) vertigo_conf['LUA_get_mc_sha'] = lua_sha def swift_vertigo(app): return VertigoHandlerMiddleware(app, global_conf, vertigo_conf) return swift_vertigo
1,795
def get_review_score_fields(call, proposals): """Return a dictionary of the score banner fields in the reviews. Compute the score means and stdevs. If there are more than two score fields, then also compute the mean of the means and the stdev of the means. This is done over all finalized reviews for each proposal. Store the values in the proposal document. """ fields = dict([(f['identifier'], f) for f in call['review'] if f.get('banner') and f['type'] == constants.SCORE]) for proposal in proposals: reviews = utils.get_docs_view('reviews', 'proposal', proposal['identifier']) # Only include finalized reviews in the calculation. reviews = [r for r in reviews if r.get('finalized')] scores = dict([(id, list()) for id in fields]) for review in reviews: for id in fields: value = review['values'].get(id) if value is not None: scores[id].append(float(value)) proposal['scores'] = dict() for id in fields: proposal['scores'][id] = d = dict() d['n'] = len(scores[id]) try: d['mean'] = round(statistics.mean(scores[id]), 1) except statistics.StatisticsError: d['mean'] = None try: d['stdev'] = round(statistics.stdev(scores[id]), 1) except statistics.StatisticsError: d['stdev'] = None if len(fields) >= 2: mean_scores = [d['mean'] for d in proposal['scores'].values() if d['mean'] is not None] try: mean_means = round(statistics.mean(mean_scores), 1) except statistics.StatisticsError: mean_means = None proposal['scores']['__mean__'] = mean_means try: stdev_means = round(statistics.stdev(mean_scores), 1) except statistics.StatisticsError: stdev_means = None proposal['scores']['__mean__'] = mean_means proposal['scores']['__stdev__'] = stdev_means return fields
1,796
def vThreadFunction(): """Function to do CPU-bound work. Args: Returns: """ iResult = 0 for iCnt in range(50000000): iResult += iCnt
1,797
def test_simple_profiler_iterable_durations(simple_profiler, action, expected): """Ensure the reported durations are reasonably accurate.""" iterable = _sleep_generator(expected) for _ in simple_profiler.profile_iterable(iterable, action): pass # we exclude the last item in the recorded durations since that's when StopIteration is raised np.testing.assert_allclose( simple_profiler.recorded_durations[action][:-1], expected, rtol=0.2 )
1,798
def tokenize(text): """ Tokenize and normalize """ tokens = nltk.word_tokenize(text) lemmatizer = nltk.WordNetLemmatizer() clean_tokens = [lemmatizer.lemmatize(w).lower().strip() for w in tokens] return clean_tokens
1,799