content
stringlengths
22
815k
id
int64
0
4.91M
def nodal_distribution_factors_v2(topo: ndarray, volumes: ndarray): """The j-th factor of the i-th row is the contribution of element i to the j-th node. Assumes a regular topology.""" ndf = nodal_distribution_factors(topo, volumes) return ndf
1,500
def start(update: Update, context: CallbackContext): """Send a message when the command /start is issued.""" update.message.reply_text("Hi. Please create or choose task list from existing.")
1,501
def game_core_binary(number_to_guess): """Binary search approach. Set the first predict value as the middle of interval, i.e. 50. Then decrease or increase the predict number by step. The step is calculated using the check interval divided by 2, i.e. 25, 13 ... 1 The minimum step is always 1. The function return count of guesses""" count_guesses = 1 predict = step = round(MAX_NUMBER / 2) while number_to_guess != predict: count_guesses += 1 step = round(step / 2) if step > 1 else 1 if number_to_guess > predict: predict += step elif number_to_guess < predict: predict -= step return count_guesses
1,502
def linear_trend(series, return_line=True): """ USAGE ----- line = linear_trend(series, return_line=True) OR b, a, x = linear_trend(series, return_line=False) Returns the linear fit (line = b*x + a) associated with the 'series' array. Adapted from pylab.detrend_linear. """ series = np.asanyarray(series) x = np.arange(series.size, dtype=np.float_) C = np.cov(x, series, bias=1) # Covariance matrix. b = C[0, 1]/C[0, 0] # Angular coefficient. a = series.mean() - b*x.mean() # Linear coefficient. line = b*x + a if return_line: return line else: return b, a, x
1,503
def gradcheck_wrapper_masked_operation(op, input, *args, **kwargs): """Gradcheck wrapper for masked operations. When mask is specified, replaces masked-out elements with zeros. Use for operations that produce non-finite masked-out elements, for instance, for minimum and maximum reductions. """ output = op(input, *args, **kwargs) mask = kwargs.get('mask') if mask is not None: output_mask = torch._masked._output_mask(op, input, *args, **kwargs) output = torch.where(output_mask, output, output.new_zeros([])) return output
1,504
def classify(neural_net, image_file): """ Using the given model and image file, returns the model's prediction for the image as an array. """ img = Image.open(image_file) img.load() img_array = np.asarray(img) img_array.shape = (1, 100, 100, 3) prediction = model.predict(img_array)[0][0] return prediction
1,505
def delete(job): """Delete a job.""" # Initialise variables. jobid = job["jobid"] try: shellout = shellwrappers.sendtossh(job, ["qdel " + jobid]) except exceptions.SSHError: raise exceptions.JobdeleteError("Unable to delete job.") return shellout[0]
1,506
def regexp_span_tokenize(s, regexp): """ Identify the tokens in the string, as defined by the token delimiter regexp, and generate (start, end) offsets. @param s: the string to be tokenized @type s: C{str} @param regexp: the token separator regexp @type regexp: C{str} @rtype: C{iter} of C{tuple} of C{int} """ left = 0 for m in finditer(regexp, s): right, next = m.span() if right != 0: yield left, right left = next yield left, len(s)
1,507
def optimum_simrank(x_p, x_n, alpha): """Intermediary function to the one below.""" pos_pair_1 = itertools.combinations(x_p, 2) pos_pair_2 = itertools.combinations(x_n, 2) neg_pair = itertools.product(x_p, x_n) def get_val_from_pair(x): # Transforms each pair into one minus the minimum of its l1 distance to (0,0) or (1,1). distance_to_lower_corner = max(abs(x[0]), abs(x[1])) distance_to_upper_corner = max(abs(1. - x[0]), abs(1. - x[1])) return 1 - min(distance_to_lower_corner, distance_to_upper_corner) x_p = (np.array(list(map(get_val_from_pair, pos_pair_1)) + list(map(get_val_from_pair, pos_pair_2)))) x_n = np.array(list(map(get_val_from_pair, neg_pair))) def opt_fun(i_p, i_n): if float(i_n) / x_n.shape[0] <= alpha: return i_p / x_p.shape[0] return - float("inf") X = np.hstack([x_p, x_n]) Y = np.array([+1]*len(x_p) + [-1]*len(x_n)) f_opt, crit_opt, _ = ut.bipart_partition(X, Y, opt_fun) return 1-f_opt, crit_opt
1,508
def imports(operators=None, union=True): """ Lazily imports and returns an enaml imports context. Parameters ---------- operators : dict, optional An optional dictionary of operators to push onto the operator stack for the duration of the import context. If this is not provided, the default Enaml operators will be used. Unless a custom model framework is being used (i.e. not Atom), custom operators will typically not be needed. union : bool, optional Whether to union the operators with the operators on the top of the operator stack. The default is True and is typically the correct choice to allow overriding a subset of the default Enaml operators. Returns ------- result : context manager A context manager which will install the Enaml import hook (and optional operators) for the duration of the context. """ from enaml.core.import_hooks import imports if operators is None: return imports() from contextlib import contextmanager from enaml.core.operators import operator_context @contextmanager def imports_context(): with imports(): with operator_context(operators, union): yield return imports_context()
1,509
def create_capture_database(capture, configfile=None): """Create 1 database with 2 tables: - DoC table for coverage data - Annotation table with gene-target info. """ if configfile is None: configfile = os.path.join(SCRIPTDIR, 'config.py') config = get_config_dict(configfile) annotbed = get_annot_bedlocation(capture, pipelinedir=config['pipelinedir']) dfannot = annotbed_to_df(annotbed) DB = Databases(capture) DB.create_annot_table(dfannot) DB.create_doc_table() return
1,510
def apply_job_security(code): """Treat input `code` like Python 2 (implicit strings are byte literals). The implementation is horribly inefficient but the goal is to be compatible with what Mercurial does at runtime. """ buf = io.BytesIO(code.encode("utf8")) tokens = tokenize.tokenize(buf.readline) # NOTE: by setting the fullname to `mercurial.pycompat` below, we're # ensuring that hg-specific pycompat imports aren't inserted to the code. data = tokenize.untokenize(replacetokens(list(tokens), "mercurial.pycompat")) return cast(str, data.decode("utf8"))
1,511
def fetch(gpname: str): """" Gives gunpowder Parameters ---------- gpname: str Gunpowder name Returns ------- gpowder: dict Gunpowder in dictionary form """ gpowders = _load_many() return gpowders[gpname]
1,512
def _kc_frequency_features(time_data, times, sfreq): """ Calculate absolute power of delta and alpha band before (on a 3 seconds windows) and after K-complexes""" exp = [('before', -2.5, -0.5), ('after', 1, 3)] res = {} for m in exp: kc_matrix_temp = time_data[:, np.bitwise_and(times > m[1], times < m[2])] absol_power = compute_absol_pow_freq_bands(sfreq, kc_matrix_temp, psd_method='multitaper', psd_params={'mt_adaptive': True, 'mt_bandwidth': 3, 'mt_low_bias': True}, freq_bands=[0.5, 4, 8, 12]) delta = absol_power[:, 0] alpha = absol_power[:, 2] res[m[0]] = (delta, alpha) delta_before, alpha_before, delta_after, alpha_after = res['before'][0], res['before'][1],\ res['after'][0], res['after'][1] return delta_before, alpha_before, delta_after, alpha_after
1,513
def test_atomic_integer_total_digits_4_nistxml_sv_iv_atomic_integer_total_digits_5_5(mode, save_output, output_format): """ Type atomic/integer is restricted by facet totalDigits with value 18. """ assert_bindings( schema="nistData/atomic/integer/Schema+Instance/NISTSchema-SV-IV-atomic-integer-totalDigits-5.xsd", instance="nistData/atomic/integer/Schema+Instance/NISTXML-SV-IV-atomic-integer-totalDigits-5-5.xml", class_name="NistschemaSvIvAtomicIntegerTotalDigits5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
1,514
async def CommandProfile( ctx: SlashContext, user: Union[InteractionMember, UserImpl] ) -> None: """Handler for the /profile slash command.""" if hasattr(user, "user"): try: user.user = await ctx.rest.fetch_user(user.id) except Exception as e: logger.warning( f"Failed to fetch user {Responses.ExpandUser(user.id, False)}, {e}" ) fields: List[Dict[str, Any]] = [] altAvatar: Optional[str] = None accent: Optional[str] = None if hasattr(user, "nickname"): if (nickname := user.nickname) is not None: fields.append({"name": "Nickname", "value": nickname}) if hasattr(user, "created_at"): if (created := user.created_at) is not None: fields.append({"name": "Created", "value": Timestamps.Relative(created)}) if hasattr(user, "joined_at"): if (joined := user.joined_at) is not None: fields.append({"name": "Joined", "value": Timestamps.Relative(joined)}) if hasattr(user, "premium_since"): if (booster := user.premium_since) is not None: fields.append( { "name": "Nitro Booster", "value": f"Since {Timestamps.Relative(booster)}", } ) if hasattr(user, "communication_disabled_until"): if (timeout := user.communication_disabled_until()) is not None: fields.append( {"name": "Timed Out", "value": f"Until {Timestamps.Relative(timeout)}"} ) if hasattr(user, "is_pending"): if user.is_pending: fields.append({"name": "Passed Screening", "value": "No"}) if hasattr(user, "is_mute"): if user.is_mute: fields.append({"name": "Muted", "value": "Yes"}) if hasattr(user, "is_deaf"): if user.is_deaf: fields.append({"name": "Deafened", "value": "Yes"}) if hasattr(user, "guild_avatar_url"): if (url := user.guild_avatar_url) is not None: altAvatar = url if hasattr(user, "accent_color"): if (color := user.accent_color) is not None: accent = str(color).replace("#", "") result: Embed = Responses.Success( color=accent, fields=fields, author=f"{user.username}#{user.discriminator}", authorIcon=altAvatar, thumbnail=user.default_avatar_url if (avatar := user.avatar_url) is None else avatar, image=None if not hasattr(user, "user") else user.user.banner_url, footer=user.id, timestamp=None if created is None else created.astimezone(), ) await ctx.respond(embed=result)
1,515
def gentrends(x, window=1/3.0, charts=True): """ Returns a Pandas dataframe with support and resistance lines. :param x: One-dimensional data set :param window: How long the trendlines should be. If window < 1, then it will be taken as a percentage of the size of the data :param charts: Boolean value saying whether to print chart to screen """ import numpy as np import pandas.io.data as pd x = np.array(x) if window < 1: window = int(window * len(x)) max1 = np.where(x == max(x))[0][0] # find the index of the abs max min1 = np.where(x == min(x))[0][0] # find the index of the abs min # First the max if max1 + window > len(x): max2 = max(x[0:(max1 - window)]) else: max2 = max(x[(max1 + window):]) # Now the min if min1 - window < 0: min2 = min(x[(min1 + window):]) else: min2 = min(x[0:(min1 - window)]) # Now find the indices of the secondary extrema max2 = np.where(x == max2)[0][0] # find the index of the 2nd max min2 = np.where(x == min2)[0][0] # find the index of the 2nd min # Create & extend the lines maxslope = (x[max1] - x[max2]) / (max1 - max2) # slope between max points minslope = (x[min1] - x[min2]) / (min1 - min2) # slope between min points a_max = x[max1] - (maxslope * max1) # y-intercept for max trendline a_min = x[min1] - (minslope * min1) # y-intercept for min trendline b_max = x[max1] + (maxslope * (len(x) - max1)) # extend to last data pt b_min = x[min1] + (minslope * (len(x) - min1)) # extend to last data point maxline = np.linspace(a_max, b_max, len(x)) # Y values between max's minline = np.linspace(a_min, b_min, len(x)) # Y values between min's # OUTPUT trends = np.transpose(np.array((x, maxline, minline))) trends = pd.DataFrame(trends, index=np.arange(0, len(x)), columns=['Data', 'Max Line', 'Min Line']) if charts is True: from matplotlib.pyplot import plot, grid, show, figure figure() plot(trends) grid() show() return trends, maxslope, minslope
1,516
def test_clean_slug_exists(mock_super_clean): """ Cleaning an instance that already has a slug should not replace the slug. """ name = "foo" slug = "bar-baz" inst = models.SlugModel(slug=slug) setattr(inst, models.SlugModel.SLUG_SOURCE, name) new_slug = "foo-bar" with mock.patch.object( inst, "generate_slug", return_value=new_slug ) as mock_gen_slug: inst.clean() assert mock_super_clean.call_count == 1 assert inst.slug == slug assert mock_gen_slug.call_count == 0
1,517
def gen_cand_keyword_scores(phrase_words, word_score): """ Computes the score for the input phrases. :param phrase_words: phrases to score :type phrase_words: list :param word_score: calculated word scores :type word_score: list :return: dict *{phrase: score, ...}* """ keyword_candidates = defaultdict(int) for phrase, word_list in phrase_words: if not word_list: continue candidate_score = functools.reduce( add, [word_score[word] for word in word_list] ) keyword_candidates[phrase] = candidate_score return keyword_candidates
1,518
def analyze_network(directed=False, base_url=DEFAULT_BASE_URL): """Calculate various network statistics. The results are added to the Node and Edge tables and the Results Panel. The summary statistics in the Results Panel are also returned by the function as a list of named values. Args: directed (bool): If True, the network is considered a directed graph. Default is False. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: Named list of summary statistics Raises: requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> analyze_network() {'networkTitle': 'galFiltered.sif (undirected)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.379032258064516', 'diameter': '27', 'radius': '14', 'avSpl': '9.127660963823953', 'cc': '0.06959203036053131', 'density': '0.009631709546819902', 'heterogeneity': '0.8534500004035027', 'centralization': '0.06375695335900727', 'ncc': '26'} >>> analyze_network(True) {'networkTitle': 'galFiltered.sif (directed)', 'nodeCount': '330', 'edgeCount': '359', 'avNeighbors': '2.16969696969697', 'diameter': '10', 'radius': '1', 'avSpl': '3.4919830756382395', 'cc': '0.03544266191325015', 'density': '0.003297411808050106', 'ncc': '26', 'mnp': '1', 'nsl': '0'} """ res = commands.commands_post(f'analyzer analyze directed={directed}', base_url=base_url) return res
1,519
def create_user(): """ Create new user """ # request.get_json(): extract the JSON from the request and return it as # a Python structure. data = request.get_json() or {} # Validate mandatory fields if 'username' not in data or 'email' not in data or \ 'password' not in data: return bad_request('must include username, email and password fields') if User.query.filter_by(username=data['username']).first(): return bad_request('please use a different username') if User.query.filter_by(email=data['email']).first(): return bad_request('please use a different email address') # Create user user = User() user.from_dict(data, new_user=True) db.session.add(user) db.session.commit() # Make response response = jsonify(user.to_dict()) # The status code for a POST request that creates a resource should be 201 response.status_code = 201 response.headers['Location'] = url_for('api.get_user', id=user.id) return response
1,520
def hash_long_to_short(long_url): """ turn a long input url into a short url's url-safe 5 character hash this is deterministic and the same long_url will always have the same hash """ encoded = long_url.encode("utf-8") md5_hash = hashlib.md5(encoded).digest() return base64.urlsafe_b64encode(md5_hash)[:SHORT_URL_HASH_LENGTH]
1,521
def transform_asset_time_fields_recursive(asset): """ Transforms the asset time fields recursively """ if isinstance(asset, list): for sub_asset_object in asset: transform_asset_time_fields_recursive(sub_asset_object) if isinstance(asset, dict): for k, v in asset.items(): if isinstance(v, (list, dict)): transform_asset_time_fields_recursive(v) elif k in ASSET_TIME_FIELDS and v: asset[k] = epoch_to_iso(v)
1,522
def cutout_vstAtlas(ra, dec, bands=["u","g","r","i","z"], database="ATLASDR3",\ psfmags=None, imDir="/data/vst-atlas/", input_filename=[], saveFITS=False,\ width_as=20., smooth=False, cmap="binary", minmax="MAD", origin="lower", figTitle=True, \ return_val=False, saveDir=None): """ Plot all the bands cutouts on one plot for an input source position ## Cutouts parameters width_as: size of the cutout box; default is 20arcsec smooth: gaussian smoothing with sigma=1.0; defaul is False cmap: image colour map minmax: Defined the min-max scale of the image; default is from sigma_MAD(image) (SEE def cutout_scale) origin: where to place the [0,0] index of the image; default is "lower" figTitle: add a title to the final figure (ex: VISTA cutout 20"x20" ra=, dec= (Jradec); default is True) ## VISTA parameters ra, dec: position of the source in deg (single object, not an array) bands: filters for which to do the cutouts psfmags: magnitudes of the source. Should be an array of the same size than bands or None (default) Will be added to band cutout title if not None imDir: directory of the fits file if already save on disk input_filename: name of the input file if save on disk database: ATLAS database used = ATLAS + DataRealease saveFITS: save fits tile file on disk (to imDir) ## Output parameters return_val: return image data, min-max(image); default is False saveDir: output directory to save the final figure. If None do not save; default is None """ print("VST-ATLAS cutout(s), band(s):", "".join(bands)) ### radec: HHMMSSsDDMMSS radec_str = radecStr(ra, dec, precision=1) ### Figure: defined fig and gs figWidth = len(bands) * 8./3. fig = plt.figure(figsize=(figWidth, 4)) fig.subplots_adjust(left = 0.05, right = 0.95, top = 0.90, bottom = 0, wspace = 0) gs = gridspec.GridSpec(1, len(bands)) datas = [] for i, band in enumerate(bands): print("{}-band".format(band)) ### Filename of fits image if save of the disk if len(input_filename) == 0: input_filename = "" else: input_filename = input_filename[i] filename = imDir + input_filename ### If filename does nor exists -> get file from url if not os.path.exists(filename) or input_filename == "": filename = cdl.vstAtlas_dl(ra, dec, band, database=database, width_as=width_as,\ FitsOutputPath=imDir, saveFITS=saveFITS) print(" ", filename) ### Read fits file: cutout size = width_as ### filename could be a system path or an url or "" print(" Try to read the fits file ...") image,wcs = rd_fits(filename, ra, dec, hdrNum=1, width_as=width_as, pixelscale=0.21, smooth=smooth) ### Plot image: cutout size = width_as print(" Plot the cutout ...") ax = fig.add_subplot(gs[0,i]) if psfmags is not None: psfmags = psfmags[i] vmin, vmax = plt_image(band, image, fig, ax, psfmags=psfmags, cmap=cmap, minmax=minmax, origin=origin) datas.append((image, vmin, vmax, wcs)) ## Add a title to the figure if figTitle: fig.suptitle('VST-ATLAS cutouts ({:.0f}"x{:.0f}") \n ra: {:.4f}, dec: {:.4f} (J{})'.format(width_as, width_as,\ ra, dec, radec_str), fontsize=15) ### Output if return_val: print(" Return image data") plt.close(fig) return datas if saveDir is not None: print(" Save the figure to", saveDir) allBands = "".join(bands) plt.savefig(saveDir + "Cutouts_VISTA-{}_{}_{}_{:.0f}arcsec.png".format(survey, radec_str, allBands, width_as),\ bbox_inches="tight") plt.close() else: print(" Return the figure") return fig
1,523
def has_prefix(sub_s): """ Test possibility of sub_s before doing recursion. :param sub_s: sub_string of input word from its head. :return: (boolean) whether word stars with sub_s. """ for word in DATABASE: if word.startswith(sub_s): return True
1,524
def transform_results(search_result, user, department_filters): """ Transform podcast and podcast episode, and userlist and learning path in aggregations Add 'is_favorite' and 'lists' fields to the '_source' attributes for learning resources. Args: search_result (dict): The results from ElasticSearch user (User): the user who performed the search Returns: dict: The Elasticsearch response dict with transformed aggregates and source values """ for aggregation_key in [ "type", "topics", "offered_by", "audience", "certification", "department_name", "level", "course_feature_tags", "resource_type", ]: if f"agg_filter_{aggregation_key}" in search_result.get("aggregations", {}): if aggregation_key == "level": levels = ( search_result.get("aggregations", {}) .get(f"agg_filter_{aggregation_key}", {}) .get("level", {}) .get("level", {}) ) if levels: search_result["aggregations"]["level"] = { "buckets": [ { "key": bucket["key"], "doc_count": bucket["courses"]["doc_count"], } for bucket in levels.get("buckets", []) if bucket["courses"]["doc_count"] > 0 ] } else: search_result["aggregations"][aggregation_key] = search_result[ "aggregations" ][f"agg_filter_{aggregation_key}"][aggregation_key] search_result["aggregations"].pop(f"agg_filter_{aggregation_key}") types = search_result.get("aggregations", {}).get("type", {}) if types: type_merges = dict( zip( (PODCAST_EPISODE_TYPE, LEARNING_PATH_TYPE), (PODCAST_TYPE, USER_LIST_TYPE), ) ) for child_type, parent_type in type_merges.items(): child_type_bucket = None parent_type_bucket = None for type_bucket in search_result["aggregations"]["type"]["buckets"]: if type_bucket["key"] == child_type: child_type_bucket = type_bucket elif type_bucket["key"] == parent_type: parent_type_bucket = type_bucket if child_type_bucket and parent_type_bucket: parent_type_bucket["doc_count"] = ( child_type_bucket["doc_count"] + parent_type_bucket["doc_count"] ) search_result["aggregations"]["type"]["buckets"].remove( child_type_bucket ) elif child_type_bucket: child_type_bucket["key"] = parent_type search_result["aggregations"]["type"]["buckets"].sort( key=lambda bucket: bucket["doc_count"], reverse=True ) if not user.is_anonymous: favorites = ( FavoriteItem.objects.select_related("content_type") .filter(user=user) .values_list("content_type__model", "object_id") ) for hit in search_result.get("hits", {}).get("hits", []): object_type = hit["_source"]["object_type"] if object_type in LEARNING_RESOURCE_TYPES: if object_type == LEARNING_PATH_TYPE: object_type = USER_LIST_TYPE object_id = hit["_source"]["id"] hit["_source"]["is_favorite"] = (object_type, object_id) in favorites hit["_source"]["lists"] = get_list_items_by_resource( user, object_type, object_id ) search_result = _transform_search_results_suggest(search_result) if len(department_filters) > 0: _transform_search_results_coursenum(search_result, department_filters) return search_result
1,525
def extract_rest_proxy_info(event): """Extract REST task proxy info""" data = event.data use_proxy = data.get('use_proxy') if use_proxy and not data.get('proxy_server'): event.form.widgets.errors += (Invalid(_("Proxy access defined without proxy server!")), )
1,526
def kl_div_loss(inputs: Tensor, targets: Tensor) -> Tensor: """Computes the Kullback–Leibler divergence loss between two probability distributions.""" return F.kl_div(F.log_softmax(inputs, dim=-1), F.softmax(targets, dim=-1), reduction="none")
1,527
def get_schema_names(connection: psycopg2.extensions.connection) -> List[psycopg2.extras.RealDictRow]: """Function for getting the schema information from the given connection :param psycopg2.extensions.connection connection: The connection :return: List of rows using key-value pairs for the data :rtype: List[psycopg2.extras.RealDictRow] """ with connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cursor: query = """SELECT * FROM information_schema.schemata""" cursor.execute(query) results = cursor.fetchall() return results
1,528
def parse(string): """Returns a list of specs from an input string. For creating one spec, see Spec() constructor. """ return SpecParser().parse(string)
1,529
def get_provider_idx(provider_type): """Return the index associated to the type. """ try: return PROVIDERS_TYPE[provider_type]['idx'] except KeyError as error: raise ProviderError( "Provider type (%s) is not supported yet." % (provider_type, ) )
1,530
def file_based_convert_examples_to_features( examples, slot_label_list, intent_label_list, max_seq_length, tokenizer, output_file): """ 将InputExamples转成tf_record,并写入文件 Convert a set of InputExample to a TFRecord file. :param examples: [(text, CRF_label, class_label), ...] :param slot_label_list: CRF标签列表(String) :param intent_label_list: 触发词类别列表(String) :param max_seq_length: :param tokenizer: :param output_file: TFRecord file :return: """ writer = tf.io.TFRecordWriter(output_file) for ex_index, example in enumerate(examples): def create_int_feature(values): return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) if ex_index % 10000 == 0: logger.info("Writing example %d of length %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, slot_label_list, intent_label_list, max_seq_length, tokenizer) # convert to tensorflow format features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["slot_ids"] = create_int_feature(feature.slot_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features['is_value_ids'] = create_int_feature(feature.is_value_ids) features["is_real_example"] = create_int_feature([int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) # 写入一个样本到tf_record writer.close()
1,531
def create_readme(df): """Retrieve text from README.md and update it.""" readme = str categories = pd.unique(df["category"]) categories.sort() with open('README.md', 'r', encoding='utf-8') as read_me_file: read_me = read_me_file.read() splits = read_me.split('<!---->') # Initial project description text_intro = splits[0] # Contribution and contacts text_contributing = splits[3] text_contacts = splits[4] # TOC toc = "\n\n- [Awesome Citizen Science Projects](#awesome-citizen-science-projects)\n" # Add categories for cat in range(len(categories)): toc += f" - [{categories[cat]}](#{categories[cat]})" + "\n" # Add contributing and contact to TOC toc += "- [Contributing guidelines](#contributing-guidelines)\n" toc += "- [Contacts](#contacts)\n" # Add first part and toc to README readme = text_intro + "<!---->" + toc + "\n<!---->\n" # Add projects subtitle readme += "\n## Projects\n" # Add individual categories to README list_blocks = "" for cat in range(len(categories)): block = f"\n### {categories[cat]}\n\n" filtered = df[df["category"] == categories[cat]] list_items = "" for i, r in filtered.iterrows(): try: start_date = int(r['start_date']) except: start_date = "NA" if not pd.isna(r['icon']): project = f"- {r['icon']} [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n" list_items = list_items + project else: project = f"- [{r['name']}]({r['main_source']}) - {r['description']} (`{start_date}` - `{str(r['end_date'])}`)\n" list_items = list_items + project list_blocks = list_blocks + block + list_items # Add to categories to README.md readme += list_blocks + "\n" # Add contribution and contacts readme += '<!---->' + text_contributing readme += '<!---->' + text_contacts return readme
1,532
async def get_leaderboard_info_by_id( # ScoreSaber leaderboardId leaderboardId: float ): """ GET /api/leaderboard/by-id/{leaderboardId}/info """ # request request_url = f'{SERVER}/api/leaderboard/by-id/{leaderboardId}/info' response_dict = await request.get(request_url) return LeaderboardInfo.gen(response_dict)
1,533
async def check(app_name: str = "all"): """ Lists all migrations which have and haven't ran. :param app_name: The name of the app to check. Specify a value of 'all' to check the migrations for all apps. """ await CheckMigrationManager(app_name=app_name).run()
1,534
def distance(lat1,lon1,lat2,lon2): """Input 2 points in Lat/Lon degrees. Calculates the great circle distance between them in radians """ rlat1= radians(lat1) rlon1= radians(lon1) rlat2= radians(lat2) rlon2= radians(lon2) dlat = rlat1 - rlat2 dlon = rlon1 - rlon2 a = pow(sin(dlat/2.0),2) + cos(rlat1)*cos(rlat2)*pow(sin(dlon/2.0),2) c = 2* atan2(sqrt(a), sqrt(1-a)) return c
1,535
def minimumSwaps(arr): """ O(nlogn) """ len_arr = len(arr) arr_dict = {key+1:value for key, value in enumerate(arr)} arr_checked = [False]*len_arr total_count = 0 for key, value in arr_dict.items(): count = 0 while key != value and arr_checked[key-1] is False: arr_checked[value-1] = True count += 1 value = arr_dict.get(value) arr_checked[key-1] = True total_count += count return total_count
1,536
def store_user_bot(user_id, intended_user, bot_id): """Store an uploaded bot in object storage.""" if user_id != intended_user: raise api_util.user_mismatch_error( message="Cannot upload bot for another user.") if bot_id != 0: raise util.APIError( 400, message="Sorry, only one bot allowed per user.") uploaded_file = validate_bot_submission() with model.engine.connect() as conn: team = conn.execute(model.team_leader_query(user_id)).first() if team: user_id = intended_user = team["leader_id"] bot_where_clause = (model.bots.c.user_id == user_id) & \ (model.bots.c.id == bot_id) bot = conn.execute(model.bots.select(bot_where_clause)).first() if not bot: raise util.APIError(404, message="Bot not found.") # Check if the user already has a bot compiling if bot["compile_status"] == model.CompileStatus.IN_PROGRESS.value: raise util.APIError(400, message="Cannot upload new bot until " "previous one is compiled.") blob = gcloud_storage.Blob("{}_{}".format(user_id, bot_id), model.get_compilation_bucket(), chunk_size=262144) blob.upload_from_file(uploaded_file) # Flag the user as compiling update = model.bots.update() \ .where(bot_where_clause) \ .values( compile_status=model.CompileStatus.UPLOADED.value, update_time=sqlalchemy.sql.func.now(), timeout_sent=False, ) conn.execute(update) return util.response_success({ "user_id": user_id, "bot_id": bot["id"], })
1,537
def dispatch(methods, request, notification_errors=False): """Dispatch JSON-RPC requests to a list of methods:: r = dispatch([cat], {'jsonrpc': '2.0', 'method': 'cat', 'id': 1}) The first parameter can be either: - A *list* of functions, each identifiable by its ``__name__`` attribute. - Or a *dictionary* of name:method pairs. When using a **list**, the methods must be identifiable by a ``__name__`` attribute. Functions already have a ``__name__`` attribute:: >>> def cat(): ... return 'meow' ... >>> cat.__name__ 'cat' >>> dispatch([cat], ...) Lambdas require setting it:: >>> cat = lambda: 'meow' >>> cat.__name__ = 'cat' >>> dispatch([cat], ...) As do partials:: >>> max_ten = partial(min, 10) >>> max_ten.__name__ = 'max_ten' >>> dispatch([max_ten], ...) Alternatively, consider using a **dictionary** instead:: >>> dispatch({'cat': cat, 'max_ten': max_ten}, ...) See the `Methods`_ module for another easy way to build the list of methods. :param methods: List or dict of methods to dispatch to. :param request: JSON-RPC request. This can be in dict or string form. Byte arrays should be `decoded <https://docs.python.org/3/library/codecs.html#codecs.decode>`_ first. :param notification_errors: Should `notifications <http://www.jsonrpc.org/specification#notification>`_ get error responses? Typically notifications don't receive any response, except for "Parse error" and "Invalid request" errors. Enabling this will include all other errors such as "Method not found". A notification is then similar to many unix commands - *"There was no response, so I can assume the request was successful."* :returns: A `Response`_ object - either `RequestResponse`_, `NotificationResponse`_, or `ErrorResponse`_ if there was a problem processing the request. In any case, the return value gives you ``body``, ``body_debug``, ``json``, ``json_debug``, and ``http_status`` values. """ # Process the request r = None error = None try: # Log the request request_log.info(str(request)) # Create request object (also validates the request) r = Request(request) # Call the requested method result = _call(methods, r.method_name, r.args, r.kwargs) # Catch any JsonRpcServerError raised (Invalid Request, etc) except JsonRpcServerError as e: error = e # Catch uncaught exceptions, respond with ServerError except Exception as e: # pylint: disable=broad-except # Log the uncaught exception logger.exception(e) # Create an exception object, used to build the response error = ServerError(str(e)) # Now build a response. # Error if error: # Notifications get a non-response - see spec if r and r.is_notification and not notification_errors: response = NotificationResponse() else: # Get the 'id' part of the request, to include in error response request_id = r.request_id if r else None response = ErrorResponse( error.http_status, request_id, error.code, error.message, error.data) # Success else: # Notifications get a non-response if r and r.is_notification: response = NotificationResponse() else: response = RequestResponse(r.request_id, result) # Log the response and return it response_log.info(response.body, extra={ 'http_code': response.http_status, 'http_reason': HTTP_STATUS_CODES[response.http_status]}) return response
1,538
async def test_purehotcoollink_component_setup_only_once(devices, login, hass): """Test if entities are created only once.""" config = _get_config() await async_setup_component(hass, DYSON_DOMAIN, config) await hass.async_block_till_done() entity_ids = hass.states.async_entity_ids(DOMAIN) assert len(entity_ids) == 1 state = hass.states.get(entity_ids[0]) assert state.name == "Temp Name"
1,539
def parse_conv(weights_file, cfg_parser, section, layer_dict): """ parse conv layer Args: weights_file (file object): file object of .weights file cfg_parser (ConfigParser object): ConfigParser object of .cfg file for net section (str): name of conv layer layer_dict (dictionary): dict storing layer info Returns: dict storing layer info and weights values """ prev_layer_channel = layer_dict['prev_layer_channel'] count = layer_dict['count'] filters = int(cfg_parser[section]['filters']) size = int(cfg_parser[section]['size']) stride = int(cfg_parser[section]['stride']) pad = int(cfg_parser[section]['pad']) activation = cfg_parser[section]['activation'] batch_normalize = 'batch_normalize' in cfg_parser[section] weights_shape = (size, size, prev_layer_channel, filters) darknet_w_shape = (filters, weights_shape[2], size, size) weights_size = np.product(weights_shape) prev_layer_channel = filters print('conv2d', 'bn' if batch_normalize else ' ', activation, weights_shape) bn_weight_list = [] conv_bias = [] if batch_normalize: bn_weights = np.ndarray( shape=(4, filters), dtype='float32', buffer=weights_file.read(filters * 16)) count += 4 * filters bn_weight_list = [ bn_weights[1], # scale gamma bn_weights[0], # shift beta bn_weights[2], # running mean bn_weights[3] # running var ] else: conv_bias = np.ndarray( shape=(filters, ), dtype='float32', buffer=weights_file.read(filters * 4)) count += filters conv_weights = np.ndarray( shape=darknet_w_shape, dtype='float32', buffer=weights_file.read(weights_size * 4)) count += weights_size # DarkNet conv_weights are serialized Caffe-style: # (out_dim, in_dim, height, width) # We would like to set these to Tensorflow order: # (height, width, in_dim, out_dim) conv_weights = np.transpose(conv_weights, [2, 3, 1, 0]) layer_dict['prev_layer_channel'] = prev_layer_channel layer_dict['count'] = count layer_dict['conv_weights'] = conv_weights layer_dict['conv_bias'] = conv_bias layer_dict['bn_weight_list'] = bn_weight_list return layer_dict
1,540
def generate_format_spec(num_vals, sep, dtypes, decimals=None): """ Generate a format specifier for generic input. -------------------------------------------------------------- Input num_vals : number of wild-cards sep : separator string (could be '_', '-', '--' ...) used to separate wild-cards dtypes : data types of the wildcards ('str', 'float', 'int') decimals : number of decimals (only relevant for floats) -------------------------------------------------------------- Output String of the form: "{0:<dtype>}<sep>{1:<dtype>}<sep>...", where each occurrence of <dtype> is replaced by the dtype value of the current wild-card and <sep> is replaced by the separator string. """ assert type(num_vals) is int # dictionary of identifiers for supported data types dident = dict([(str, 's'), (int, 'd'), \ (float, ''), #'.1f'\ (np.float64, '') #'.1f' ] ) if decimals is not None: assert type(decimals) is int dident[float] = '.{}f'.format(decimals) dident[np.float64] = '.{}f'.format(decimals) if not hasattr(dtypes, '__iter__'): dtypes = [dtypes,] * num_vals elif type(dtypes) is str: dtypes = [dtypes,] * num_vals elif len(dtypes) < num_vals: dtypes = [dtypes[0],] * num_vals for dt in dtypes: assert dt in dident.keys(), dt # construct actual output out = "" for i in range(num_vals): out += "{" + str(i) + ":" + dident[dtypes[i]] + "}" out += sep # remove additional separator from output return out[:-len(sep)]
1,541
def products_with_low_stock(threshold: Optional[int] = None): """Return queryset with stock lower than given threshold.""" if threshold is None: threshold = settings.LOW_STOCK_THRESHOLD stocks = ( Stock.objects.select_related("product_variant") .values("product_variant__product_id", "warehouse_id") .annotate(total_stock=Sum("quantity")) ) return stocks.filter(total_stock__lte=threshold).distinct()
1,542
def robust_topological_sort(deps): """ A topological sorting algorithm which is robust enough to handle cyclic graphs. First, we bucket nodes into strongly connected components (we use Tarjan's linear algorithm for that). Then, we topologically sort these buckets grouping sibling buckets into sets. :param deps: a dictionary representing the dependencies between nodes :return: groups of buckets (a bucket is a strongly connected component) sorted bottom-up >>> deps1 = {'S':{'S','X', 'A'}, 'X':{'Y', 'B'}, 'Y':{'Z'}, 'Z':{'X'}, 'A':{'B'}, 'B':{}} >>> expected = [frozenset({frozenset({'B'})}), frozenset({frozenset({'A'}), frozenset({'Y', 'X', 'Z'})}), frozenset({frozenset({'S'})})] >>> order = robust_topological_sort(deps1) >>> order == expected True """ # correspondences between nodes and buckets (strongly connected components) n2c = defaultdict(None) components = tarjan(deps) for i, component in enumerate(components): for v in component: n2c[v] = i # find the dependencies between strongly connected components cdeps = defaultdict(set) for head, tail in deps.items(): hc = n2c[head] for t in tail: tc = n2c[t] if hc != tc: cdeps[hc].add(tc) # topsort buckets and translate bucket ids back into nodes return deque(frozenset(components[c] for c in group) for group in topological_sort(cdeps))
1,543
def deprecated(reason): """ This is a decorator which can be used to mark functions and classes as deprecated. It will result in a warning being emitted when the function is used. From https://stackoverflow.com/a/40301488 """ string_types = (type(b""), type(u"")) if isinstance(reason, string_types): # The @deprecated is used with a 'reason'. # # .. code-block:: python # # @deprecated("please, use another function") # def old_function(x, y): # pass def decorator(func1): if inspect.isclass(func1): fmt1 = "Call to deprecated class {name} ({reason})." else: fmt1 = "Call to deprecated function {name} ({reason})." @functools.wraps(func1) def new_func1(*args, **kwargs): warnings.simplefilter("always", DeprecationWarning) warnings.warn( fmt1.format(name=func1.__name__, reason=reason), category=DeprecationWarning, stacklevel=2, ) warnings.simplefilter("default", DeprecationWarning) return func1(*args, **kwargs) return new_func1 return decorator elif inspect.isclass(reason) or inspect.isfunction(reason): # The @deprecated is used without any 'reason'. # # .. code-block:: python # # @deprecated # def old_function(x, y): # pass func2 = reason if inspect.isclass(func2): fmt2 = "Call to deprecated class {name}." else: fmt2 = "Call to deprecated function {name}." @functools.wraps(func2) def new_func2(*args, **kwargs): warnings.simplefilter("always", DeprecationWarning) warnings.warn( fmt2.format(name=func2.__name__), category=DeprecationWarning, stacklevel=2, ) warnings.simplefilter("default", DeprecationWarning) return func2(*args, **kwargs) return new_func2 else: raise TypeError(repr(type(reason)))
1,544
def rotate_tensor(l: torch.Tensor, n: int = 1) -> torch.Tensor: """Roate tensor by n positions to the right Args: l (torch.Tensor): input tensor n (int, optional): positions to rotate. Defaults to 1. Returns: torch.Tensor: rotated tensor """ return torch.cat((l[n:], l[:n]))
1,545
def test_apply_spatial1_onecolumn(c_or_python): """Test the code path for Python _apply_array_spatial1 with one column """ fqe.settings.use_accelerated_code = c_or_python work = fqe_data.FqeData(2, 1, 3) work.set_wfn(strategy='ones') # dummy Hamiltonian with one nonzero column h1 = numpy.asarray( [[1.0 + 0.j, 0. + 0.j, 0.0 + 0.j], [0.0 + 0.j, 0.0 + 0.j, 0.0 + 0.j], [1.0 + 0.j, 0.0 + 0.j, 0.0 + 0.j]], dtype=numpy.complex128) work.apply_inplace((h1,)) assert numpy.allclose( work.coeff, numpy.asarray( [[2. + 0.j, 1. + 0.j, 2. + 0.j], [2. + 0.j, 1. + 0.j, 2. + 0.j], [0. + 0.j, -1. + 0.j, 0. + 0.j]], dtype=numpy.complex128))
1,546
def test_multiple_header_rows(): """column names that indicate coordinates are found even if buried in the middle of multiple header rows.""" tables = etree.XML( """<extracted-tables-set> <pmcid>123</pmcid> <extracted-table> <table-id /> <table-label /> <transformed-table> <table> <thead> <tr><td>Task 1</td></tr> <tr><td>x, y, z</td></tr> <tr><td>Something</td></tr> </thead> <tbody> <tr><td>-10,-15,+68 </td></tr> </tbody> </table> </transformed-table> </extracted-table> </extracted-tables-set> """ ) coords = _coordinates._extract_coordinates_from_article_tables(tables) assert ( coords.loc[:, ["x", "y", "z"]].values.ravel() == [-10, -15, 68] ).all()
1,547
def generate_all_fish( n_fish, n_replica_fish, channel, interaction, k_coh, k_ar, alpha, lim_neighbors, weights = [1], neighbor_weights=None, fish_max_speeds=None, clock_freqs=None, verbose=False, names=None ): """Generate both replica and regular fish Arguments: n_fish {int} -- Number of ideal fish to generate n_replica_fish {int} -- Number of replica fish to generate channel {Channel} -- Channel instance interaction {Interaction} -- Interaction instance k_coh {float} -- Parameter to Delight Fish k_ar {float} -- Weighting of neighbors in Delight Fish alpha {int} -- Goal distance from neighbor for Delight Fish lim_neighbors {list} -- Tuple of min and max neighbors weights {float|list} -- List of weights for replica fish learned function neighbor_weight {float|list} -- List of neighbor weights fish_max_speeds {float|list} -- List of max speeds clock_freqs {int|list} -- List of clock speeds names {list} -- List of names for your replica fish """ n = n_fish + n_replica_fish if neighbor_weights is None: neighbor_weights = [1.0] * n elif not isinstance(neighbor_weights, list): neighbor_weights = [neighbor_weights] * n if fish_max_speeds is None: fish_max_speeds = [1.0] * n elif not isinstance(fish_max_speeds, list): fish_max_speeds = [fish_max_speeds] * n if clock_freqs is None: clock_freqs = [1] * n elif not isinstance(clock_freqs, list): clock_freqs = [clock_freqs] * n if names is None: names = ['Unnamed'] * n all_fish = [] for i in range(n_fish): all_fish.append(Fish( id=i, channel=channel, interaction=interaction, k_coh = k_coh, k_ar = k_ar, alpha = alpha, lim_neighbors=lim_neighbors, neighbor_weight=neighbor_weights[i], fish_max_speed=fish_max_speeds[i], clock_freq=clock_freqs[i], verbose=verbose, name=names[i] )) for i in range(n_fish, n_fish + n_replica_fish): all_fish.append(ReplicaFish( id=i, channel=channel, interaction=interaction, weights = weights, fish_max_speed=fish_max_speeds[i], clock_freq=clock_freqs[i], name=names[i], verbose=verbose )) return all_fish
1,548
def allclose(a, b): """ close to machine precision """ return np.allclose(a, b, rtol=1e-14, atol=1e-14)
1,549
def check_pwhash(pwhash, password): """Check a password against a given hash value. Since many forums save md5 passwords with no salt and it's technically impossible to convert this to an sha hash with a salt we use this to be able to check for plain passwords:: plain$$default md5 passwords without salt:: md5$$c21f969b5f03d33d43e04f8f136e7682 md5 passwords with salt:: md5$123456$7faa731e3365037d264ae6c2e3c7697e sha passwords:: sha$123456$118083bd04c79ab51944a9ef863efcd9c048dd9a Note that the integral passwd column in the table is only 60 chars long. If you have a very large salt or the plaintext password is too long it will be truncated. >>> check_pwhash('plain$$default', 'default') True >>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password') True >>> check_pwhash('sha$$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'wrong') False >>> check_pwhash('md5$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', u'example') True >>> check_pwhash('sha$5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8', 'password') False >>> check_pwhash('md42$xyz$bcc27016b4fdceb2bd1b369d5dc46c3f', 'example') False """ if isinstance(password, unicode): password = password.encode('utf-8') if pwhash.count('$') < 2: return False method, salt, hashval = pwhash.split('$', 2) if method == 'plain': return hashval == password elif method == 'md5': h = md5() elif method == 'sha': h = sha1() else: return False h.update(salt) h.update(password) return h.hexdigest() == hashval
1,550
def make_markov_model(tweets): """Wrapper around making Markov Chain""" return markovify.Text(" ".join(tweets))
1,551
def slice_image(sitk_image, start=(0, 0, 0), end=(-1, -1, -1)): """"Returns the `sitk_image` sliced from the `start` index (x,y,z) to the `end` index. """ size = sitk_image.GetSize() assert len(start) == len(end) == len(size) # replace -1 dim index placeholders with the size of that dimension end = [size[i] if end[i] == -1 else end[i] for i in range(len(end))] slice_filter = sitk.SliceImageFilter() slice_filter.SetStart(start) slice_filter.SetStop(end) return slice_filter.Execute(sitk_image)
1,552
def MakeGlyphs(src, reverseNormals): """ Glyph the normals on the surface. You may need to adjust the parameters for maskPts, arrow and glyph for a nice appearance. :param: src - the surface to glyph. :param: reverseNormals - if True the normals on the surface are reversed. :return: The glyph object. """ # Sometimes the contouring algorithm can create a volume whose gradient # vector and ordering of polygon (using the right hand rule) are # inconsistent. vtkReverseSense cures this problem. reverse = vtk.vtkReverseSense() # Choose a random subset of points. maskPts = vtk.vtkMaskPoints() maskPts.SetOnRatio(5) maskPts.RandomModeOn() if reverseNormals: reverse.SetInputData(src) reverse.ReverseCellsOn() reverse.ReverseNormalsOn() maskPts.SetInputConnection(reverse.GetOutputPort()) else: maskPts.SetInputData(src) # Source for the glyph filter arrow = vtk.vtkArrowSource() arrow.SetTipResolution(16) arrow.SetTipLength(0.3) arrow.SetTipRadius(0.1) glyph = vtk.vtkGlyph3D() glyph.SetSourceConnection(arrow.GetOutputPort()) glyph.SetInputConnection(maskPts.GetOutputPort()) glyph.SetVectorModeToUseNormal() glyph.SetScaleFactor(1) glyph.SetColorModeToColorByVector() glyph.SetScaleModeToScaleByVector() glyph.OrientOn() glyph.Update() return glyph
1,553
def get_tags_categorys(self): """02返回添加文档的变量""" tags = Tag.all() categorys = Category.all() return tags, categorys
1,554
def main(): """Operations executed when calling this script from the command line""" args = ArgparseUserOptions( description=parser_description, args_dict_list=[required_args_dict, optional_args_dict], epilog=__doc__, ).parse_args(sys.argv[1:]) return args
1,555
def single_mode_constant_rotation(**kwargs): """Return WaveformModes object a single nonzero mode, with phase proportional to time The waveform output by this function will have just one nonzero mode. The behavior of that mode will be fairly simple; it will be given by exp(i*omega*t). Note that omega can be complex, which gives damping. Parameters ---------- s : int, optional Spin weight of the waveform field. Default is -2. ell, m : int, optional The (ell, m) values of the nonzero mode in the returned waveform. Default value is (abs(s), -abs(s)). ell_min, ell_max : int, optional Smallest and largest ell values present in the output. Default values are abs(s) and 8. data_type : int, optional Default value is whichever psi_n corresponds to the input spin. It is important to choose these, rather than `h` or `sigma` for the analytical solution to translations, which doesn't account for the direct contribution of supertranslations (as opposed to the indirect contribution, which involves moving points around). t_0, t_1 : float, optional Beginning and end of time. Default values are -20. and 20. dt : float, optional Time step. Default value is 0.1. omega : complex, optional Constant of proportionality such that nonzero mode is exp(i*omega*t). Note that this can be complex, which implies damping. Default is 0.5. """ s = kwargs.pop("s", -2) ell = kwargs.pop("ell", abs(s)) m = kwargs.pop("m", -ell) ell_min = kwargs.pop("ell_min", abs(s)) ell_max = kwargs.pop("ell_max", 8) data_type = kwargs.pop("data_type", scri.DataType[scri.SpinWeights.index(s)]) t_0 = kwargs.pop("t_0", -20.0) t_1 = kwargs.pop("t_1", 20.0) dt = kwargs.pop("dt", 1.0 / 10.0) t = np.arange(t_0, t_1 + dt, dt) n_times = t.size omega = complex(kwargs.pop("omega", 0.5)) data = np.zeros((n_times, sf.LM_total_size(ell_min, ell_max)), dtype=complex) data[:, sf.LM_index(ell, m, ell_min)] = np.exp(1j * omega * t) if kwargs: import pprint warnings.warn(f"\nUnused kwargs passed to this function:\n{pprint.pformat(kwargs, width=1)}") return scri.WaveformModes( t=t, data=data, ell_min=ell_min, ell_max=ell_max, frameType=scri.Inertial, dataType=data_type, r_is_scaled_out=True, m_is_scaled_out=True, )
1,556
def get_file(file_pattern: list, sub_type: str = None) -> list: """Get a subset from file patterns that belong to a sub-type. If no sub-type is specified, return all file patterns. Args: file_pattern (list): The input file patterns sub_type (str, optional): A string to search in file patterns. Defaults to None. Raises: ValueError: No file pattern matches the sub-type provided. Returns: list: A filtered sub list of file patterns. """ if sub_type is None: return file_pattern result = [] for entry in file_pattern: if sub_type in entry: result.append(entry) if len(result) < 1: raise ValueError( "No file found for sub-type {}: {}".format(sub_type, file_pattern) ) else: return result
1,557
def etopo_subset(llcrnrlon=None, urcrnrlon=None, llcrnrlat=None, urcrnrlat=None, tfile='dap', smoo=False, subsample=False): """Get a etopo subset. Should work on any netCDF with x, y, data http://www.trondkristiansen.com/wp-content/uploads/downloads/ 2011/07/contourICEMaps.py Example ------- >>> import matplotlib.pyplot as plt >>> offset = 5 >>> #tfile = './ETOPO1_Bed_g_gmt4.grd' >>> tfile = 'dap' >>> llcrnrlon, urcrnrlon, llcrnrlat, urcrnrlat = -43, -30, -22, -17 >>> lons, lats, bathy = etopo_subset(llcrnrlon - offset, ... urcrnrlon + offset, ... llcrnrlat - offset, ... urcrnrlat + offset, ... smoo=True, tfile=tfile) >>> fig, ax = plt.subplots() >>> cs = ax.pcolormesh(lons, lats, bathy) >>> _ = ax.axis([-42, -28, -23, -15]) >>> _ = ax.set_title(tfile) """ if tfile == 'dap': tfile = 'http://opendap.ccst.inpe.br/Misc/etopo2/ETOPO2v2c_f4.nc' etopo = Dataset(tfile, 'r') lons = etopo.variables["x"][:] lats = etopo.variables["y"][:] res = get_indices(llcrnrlat, urcrnrlat, llcrnrlon, urcrnrlon, lons, lats) lon, lat = np.meshgrid(lons[res[0]:res[1]], lats[res[2]:res[3]]) bathy = etopo.variables["z"][int(res[2]):int(res[3]), int(res[0]):int(res[1])] if smoo: bathy = laplace_filter(bathy, M=None) if subsample: bathy = bathy[::subsample] lon, lat = lon[::subsample], lat[::subsample] return lon, lat, bathy
1,558
def get_all_report_data(db): """ Gets all report data for pre report page """ query = r'SELECT * FROM report WHERE relevent=1 ORDER BY id DESC' return db_get(db, query)
1,559
def find_center_projection(mat1, mat2, flip=True, chunk_height=None, start_row=None, denoise=True, norm=False, use_overlap=False): """ Find the center-of-rotation (COR) using projection images at 0-degree and 180-degree based on a method in Ref. [1]. Parameters ---------- mat1 : array_like 2D array. Projection image at 0-degree. mat2 : array_like 2D array. Projection image at 180-degree. flip : bool, optional Flip the 180-degree projection in the left-right direction if True. chunk_height : int or float, optional Height of the sub-area of projection images. If a float is given, it must be in the range of [0.0, 1.0]. start_row : int, optional Starting row used to extract the sub-area. denoise : bool, optional Apply the Gaussian filter if True. norm : bool, optional Apply the normalization if True. use_overlap : bool, optional Use the combination of images in the overlap area for calculating correlation coefficients if True. Returns ------- cor : float Center-of-rotation. References ---------- .. [1] https://doi.org/10.1364/OE.418448 """ (nrow, ncol) = mat1.shape if flip is True: mat2 = np.fliplr(mat2) win_width = ncol // 2 if chunk_height is None: chunk_height = int(0.1 * nrow) if isinstance(chunk_height, float): if 0.0 < chunk_height <= 1.0: chunk_height = int(chunk_height * nrow) else: chunk_height = int(0.1 * nrow) chunk_height = np.clip(chunk_height, 1, nrow - 1) if start_row is None: start = nrow // 2 - chunk_height // 2 elif start_row < 0: start = nrow + start_row - chunk_height // 2 else: start = start_row - chunk_height // 2 stop = start + chunk_height start = np.clip(start, 0, nrow - chunk_height - 1) stop = np.clip(stop, chunk_height, nrow - 1) mat1_roi = mat1[start: stop] mat2_roi = mat2[start: stop] (overlap, side, _) = find_overlap(mat1_roi, mat2_roi, win_width, side=None, denoise=denoise, norm=norm, use_overlap=use_overlap) if side == 0: cor = overlap / 2.0 - 1.0 else: cor = ncol - overlap / 2.0 - 1.0 return cor
1,560
def parse_date(str): """ parsing given str to date """ ymd = str.split('-') return date(int(ymd[0]), int(ymd[1]), int(ymd[2]))
1,561
def mark_as_widget(view): """ Marks @view as a widget so we can later inspect that attribute, for example, when hiding panels in _vi_enter_normal_mode. Used prominently by '/', '?' and ':'. XXX: This doesn't always work as we expect. For example, changing settings to a panel created instants before does not make those settings visible when the panel is activated. Investigate. We still need this so that contexts will ignore widgets, though. However, the fact that they are widgets should suffice to disable Vim keys for them... """ view.settings().set('is_vintageous_widget', True) return view
1,562
def module_name(ctx, f): """Given Haskell source file path, turn it into a dot-separated module name. module_name( ctx, "some-workspace/some-package/src/Foo/Bar/Baz.hs", ) => "Foo.Bar.Baz" Args: ctx: Rule context. f: Haskell source file. Returns: string: Haskell module name. """ return _drop_extension(_rel_path_to_module(ctx, f).replace('/', '.'))
1,563
def train( train_dir, batch_size_per_gpu, num_train_epochs, dataset_name, dataset_parent_dir, strategy=None): """TBD.""" # ---------------------------------------------------------------------------- # Print train configuration. # ---------------------------------------------------------------------------- os.makedirs(train_dir, exist_ok=True) configs = list_configs() print(configs) with open(os.path.join(train_dir, 'run_config.txt'), 'a') as f: f.write(configs) f.write('# =============================================================\n') # ---------------------------------------------------------------------------- # Initialize tf.distribute.Strategy and other training variables. # ---------------------------------------------------------------------------- if strategy is None: strategy = tf.distribute.MirroredStrategy() print ('Number of devices: {}'.format(strategy.num_replicas_in_sync)) global_batch_size = batch_size_per_gpu * strategy.num_replicas_in_sync # ---------------------------------------------------------------------------- # Prepare input data # ---------------------------------------------------------------------------- train_dataset = voxceleb.provide_data( data_source_pattern=osp.join(dataset_parent_dir, opts.trainset_pattern), use_segmaps = opts.use_segmaps, batch_size=global_batch_size, k_frames=opts.K, num_concatenations=opts.num_frame_concatenations, is_training=True, shuffle=True) dist_train_dataset = strategy.experimental_distribute_dataset(train_dataset) train_summary_writer = tf.summary.create_file_writer(train_dir) train_summary_writer.set_as_default() # ---------------------------------------------------------------------------- # Construct graph and ops for training and evaluation. # ---------------------------------------------------------------------------- lr_warmstart_steps = opts.lr_warmstart_steps # decay_start_step = (opts.num_train_epochs - opts.num_lr_decay_epochs) * ( # opts.trainset_size // global_batch_size) # decay_end_step = ( # opts.num_train_epochs * opts.trainset_size // global_batch_size) prev_global_step = utils.load_variable_from_checkpoint( train_dir, 'global_step') prev_train_examples_count = utils.load_variable_from_checkpoint( train_dir, 'train_examples_count') if prev_global_step is None: prev_global_step = 0 if prev_train_examples_count is None: prev_train_examples_count = 0 total_train_examples = opts.total_k_examples * 1000 num_lr_decay_examples = opts.num_lr_decay_k_examples * 1000 decay_start_example = total_train_examples - num_lr_decay_examples remaining_steps_to_decay = ( (decay_start_example - prev_train_examples_count) // global_batch_size) decay_start_step = prev_global_step + remaining_steps_to_decay remaining_steps_to_terminate = ( (total_train_examples - prev_train_examples_count) // global_batch_size) decay_end_step = prev_global_step + remaining_steps_to_terminate decay_num_intervals = opts.decay_num_intervals if opts.scale_lr_with_num_gpus: lr_mul_factor = strategy.num_replicas_in_sync else: lr_mul_factor = 1 with strategy.scope(): model = _create_model(opts.model_type, opts) model.init_extra_train_and_eval_networks() optimizers = model.create_optimizers( lr_warmstart_steps, decay_start_step, decay_end_step, decay_num_intervals, lr_mul_factor) if opts.model_type == 'pretrain_layout': g_optimizer = optimizers['g_layout_optimizer'] else: g_optimizer = optimizers['g_optimizer'] if 'd_optimizer' in optimizers: d_optimizer = optimizers['d_optimizer'] else: d_optimizer = None tf.compat.v1.logging.info('Creating Timer ...') global_step = tf.compat.v1.train.get_or_create_global_step() timer = tf.estimator.SecondOrStepTimer(every_steps=100) timer.update_last_triggered_step(global_step.numpy()) # ---------------------------------------------------------------------------- # Create checkpoing manager. # ---------------------------------------------------------------------------- tf.compat.v1.logging.info('Creating checkpoint ...') epoch_var = tf.Variable(0, dtype=tf.int64, trainable=False) train_examples_count_var = tf.Variable(0, dtype=tf.int64, trainable=False) checkpoint = tf.train.Checkpoint( **model.get_optimizers(), global_step=global_step, epoch=epoch_var, train_examples_count=train_examples_count_var, training_finished=tf.Variable(False, dtype=tf.bool, trainable=False), **model.get_networks()) checkpoint_manager = tf.train.CheckpointManager( checkpoint, directory=train_dir, max_to_keep=opts.max_checkpoints_to_keep, keep_checkpoint_every_n_hours=opts.keep_checkpoint_every_n_hours) # ---------------------------------------------------------------------------- # Restore pre-trained models or old checkpoints, if any. # ---------------------------------------------------------------------------- if checkpoint_manager.latest_checkpoint: print('Restoring model weights from {}'.format( checkpoint_manager.latest_checkpoint)) # checkpoint.restore(checkpoint_manager.latest_checkpoint).expect_partial() status = checkpoint.restore(checkpoint_manager.latest_checkpoint) # status.assert_consumed() elif opts.warmup_checkpoint: warmup_ckpt = tf.train.Checkpoint( # **model.get_optimizers(), global_step=global_step, epoch=epoch_var, train_examples_count=train_examples_count_var, # training_finished=tf.Variable(False, dtype=tf.bool, trainable=False), **model.get_networks()) warmup_ckpt_manager = tf.train.CheckpointManager( warmup_ckpt, directory=opts.warmup_checkpoint, max_to_keep=1) assert warmup_ckpt_manager.latest_checkpoint, ( f'No latest ckpt for --warmup_checkpoint={opts.warmup_checkpoint}') print('*** Warmstarting model weights from {}'.format( warmup_ckpt_manager.latest_checkpoint)) status = warmup_ckpt.restore(warmup_ckpt_manager.latest_checkpoint) status.expect_partial() else: print('Initializing networks from scratch!') # Load pre-trained weights for auxiliary netwrosk (e.g. VGGFace). model.load_loss_pretrained_weights() if train_examples_count_var.numpy() >= opts.total_k_examples * 1000: print('Model has already trained for --total_k_examples=%d.' % ( opts.total_k_examples)) return # ---------------------------------------------------------------------------- # Main loop. # ---------------------------------------------------------------------------- st_time = time.time() steps_per_second = -1 tf.summary.experimental.set_step(step=global_step.numpy()) first_step_flag = True # Alternatively, you can use (global_step.numpy() < opts.max_steps). # while epoch_var.numpy() < num_train_epochs: while train_examples_count_var.numpy() < opts.total_k_examples * 1000: for batch_idx, train_input_dict in enumerate(dist_train_dataset): log_info = (global_step.numpy() % opts.log_info_every_n_steps) == 0 log_str = '' if log_info: d_iter = 'N/A' if d_optimizer is None else str( d_optimizer.iterations.numpy()) log_str += ( f'[EPOCH {epoch_var.numpy() + 1}; i_batch={batch_idx}; ' f'global_step={global_step.numpy()} ' f'num_k_examples={train_examples_count_var.numpy() // 1000} ' f'(g_iter={g_optimizer.iterations.numpy()}, d_iter={d_iter})]: ') if first_step_flag: train_g_step = True else: train_g_step = (batch_idx % opts.disc_steps_per_g) == 0 # First call to @tf.functions needs to construct the full graph, hence # needs to run both G and D train steps. if not opts.alternate_G_D_training or first_step_flag: loss_dict, _, summaries = model.train_distributed( strategy, train_input_dict, global_batch_size, train_g_step=train_g_step, train_d_step=True) else: if train_g_step: loss_dict, _, summaries = model.train_distributed( strategy, train_input_dict, global_batch_size, train_g_step=True, train_d_step=False) loss_dict, _, summaries = model.train_distributed( strategy, train_input_dict, global_batch_size, train_g_step=False, train_d_step=True) if first_step_flag: for network_name, network in model.get_networks().items(): model_utils.print_model_summary(network, network_name, list_vars=True) first_step_flag = False # Increment train examples count. train_examples_count_var.assign_add(global_batch_size) # Write summaries. if global_step.numpy() % opts.save_summaries_every_n_steps == 0: tf.summary.experimental.set_step(step=global_step.numpy()) # tf.summary.scalar('iterations', global_step.numpy()) for optimizer_name, optimizer in optimizers.items(): tf.summary.scalar(f'learning_rate/{optimizer_name}', optimizer.learning_rate.numpy()) # Write loss summaries. for key, value in loss_dict.items(): tf.summary.scalar('losses/' + key, value) # Write other scalar, image and text summaries. scalar_summaries, image_summaries, text_summaries = summaries # Scalar summaries. for key, value in scalar_summaries.items(): if strategy.num_replicas_in_sync > 1: value = value.values[0] tf.summary.scalar(key, value) # Image summaries. for key, value in image_summaries.items(): if strategy.num_replicas_in_sync > 1: value = value.values[0] tf.summary.image(key, (value + 1.) / 2.) # Text summaries. for key, value in text_summaries.items(): if strategy.num_replicas_in_sync > 1: value = value.values[0] tf.summary.text(key, value) # Log losses. if log_info: for i, (key, value) in enumerate(loss_dict.items()): log_str += (', ' if i > 0 else '') + f'{key}={value:.3f}' print(log_str) # Log steps/sec. if timer.should_trigger_for_step(global_step.numpy()): elapsed_time, elapsed_steps = timer.update_last_triggered_step( global_step.numpy()) if elapsed_time is not None: steps_per_second = elapsed_steps / elapsed_time tf.summary.scalar( 'steps/sec', steps_per_second, step=global_step) # Increment global_step. tf.compat.v1.assign_add(global_step, 1) # Save checkpoint. if (global_step.numpy() - 1) % opts.save_checkpoint_every_n_steps == 0: tf.compat.v1.logging.info('Saving checkpoint at step %d to %s.' % ( global_step.numpy(), train_dir)) checkpoint_manager.save( checkpoint_number=global_step.numpy()) if (train_examples_count_var.numpy() // opts.trainset_size) > ( epoch_var.numpy()): # Increment epoch. epoch_var.assign_add(1) break # Assign training_finished variable to True after training is finished, # save the last checkpoint and close summary writer. checkpoint.training_finished.assign(True) checkpoint_manager.save(checkpoint_number=global_step.numpy()) train_summary_writer.close() # Print overall training time. total_time = time.time() - st_time print('Total runtime for %d K examples (%d epochs) = %s.' % ( opts.total_k_examples, epoch_var.numpy(), total_time))
1,564
def store(key): """Gets the configured default store. The default is PickleStore :return store: Store object """ global __stores if __stores is None: __stores = {} if key not in __stores: __stores[key] = __configuration[STORE](key) return __stores[key]
1,565
def test_cross_val_score_weighted(): """Test ``cross_val_score_weighted``.""" sample_weights = np.array([1.0, 1.0, 0.0, 1.0, 1.0, 0.0]) cv_score_kwargs = { 'estimator': LinearRegression(), 'x_data': np.arange(6).reshape(6, 1), 'y_data': np.array([0, 1, 1000, 0, -1, -1000]), 'groups': ['A', 'A', 'A', 'B', 'B', 'B'], 'scoring': 'neg_mean_absolute_error', 'cv': LeaveOneGroupOut(), 'fit_params': {'sample_weight': sample_weights}, 'sample_weights': sample_weights, } scores = cross_val_score_weighted(**cv_score_kwargs) np.testing.assert_allclose(scores, [-2.0, -4.0])
1,566
def get_label_for_line(line, leg): """ Can't remember what I was using this for but seems useful to keep """ # leg = line.figure.legends[0] # leg = line.axes.get_legend() for h, t in zip(leg.legendHandles, leg.texts): if h.get_label() == line.get_label(): return t.get_text()
1,567
def test_save_unfitted(): """Save an unfitted HMMClassifier object.""" try: with pytest.raises(RuntimeError) as e: HMMClassifier().save('test.pkl') assert str(e.value) == 'The classifier needs to be fitted before it can be saved' finally: if os.path.exists('test.pkl'): os.remove('test.pkl')
1,568
def validate_maximum(value, maximum): """Validate that ``value`` is at most ``maximum`` Normally called in :meth:`~mopidy.config.types.ConfigValue.deserialize`. """ if maximum is not None and value > maximum: raise ValueError( '{!r} must be smaller than {!r}.'.format(value, maximum))
1,569
def _node_parent_listener(target, value, oldvalue, initiator): """Listen for Node.parent being modified and update path""" if value != oldvalue: if value is not None: if target._root != (value._root or value): target._update_root(value._root or value) target._update_path(newparent=value) else: # This node just got orphaned. It's a new root target._update_root(target) target._update_path(newparent=target) return value
1,570
def flatten(sequence): """ Gets a first visit iterator for the given tree. Args: sequence: The iterable that is to be flattened Returns: iterable """ for item in sequence: if isinstance(item, (list, tuple)): for subitem in flatten(item): yield subitem else: yield item
1,571
def vxm_data_generator(x_data, batch_size=32): """ Generator that takes in data of size [N, H, W], and yields data for our custom vxm model. Note that we need to provide numpy data for each input, and each output. inputs: moving [bs, H, W, 1], fixed image [bs, H, W, 1] outputs: moved image [bs, H, W, 1], zero-gradient [bs, H, W, 2] """ # preliminary sizing vol_shape = x_data.shape[1:] # extract data shape ndims = len(vol_shape) # prepare a zero array the size of the deformation # we'll explain this below zero_phi = np.zeros([batch_size, *vol_shape, ndims]) while True: # prepare inputs: # images need to be of the size [batch_size, H, W, 1] idx1 = np.random.randint(0, x_data.shape[0], size=batch_size) moving_images = x_data[idx1, ..., np.newaxis] idx2 = np.random.randint(0, x_data.shape[0], size=batch_size) fixed_images = x_data[idx2, ..., np.newaxis] inputs = [moving_images, fixed_images] # prepare outputs (the 'true' moved image): # of course, we don't have this, but we know we want to compare # the resulting moved image with the fixed image. # we also wish to penalize the deformation field. outputs = [fixed_images, zero_phi] yield (inputs, outputs)
1,572
def test_jinja2_required_extensions() -> None: """Test ``jinja2.ext`` has attrs needed for language support.""" # noinspection PyUnresolvedReferences assert hasattr(jinja2_ext, "autoescape") assert hasattr(jinja2_ext, "with_")
1,573
def _make_block_conf_header(block, append_fn): """Returns a list of config.h strings for a block (list) of items.""" # Collect the substrings in a list and later use join() instead of += to # build the final .config contents. With older Python versions, this yields # linear instead of quadratic complexity. for item in block: item._make_conf_header(append_fn)
1,574
def save_model_architecture(model, project_name, keras_model_type, cat_vocab_dict, model_options, chart_name="model_before"): """ This function saves the model architecture in a PNG file in the artifacts sub-folder of project_name folder """ if isinstance(project_name,str): if project_name == '': project_name = "deep_autoviml" else: print('Project name must be a string and helps create a folder to store model.') project_name = "deep_autoviml" save_model_path = model_options['save_model_path'] save_artifacts_path = os.path.join(save_model_path, "artifacts") try: plot_filename = os.path.join(save_artifacts_path,chart_name)+".png" print('\nSaving model architecture...') tf.keras.utils.plot_model(model = model, to_file=plot_filename, dpi=72, show_layer_names=True, rankdir="LR", show_shapes=True) print(' model architecture saved in file: %s' %plot_filename) except: print('Model architecture not saved due to error. Continuing...') plot_filename = "" return plot_filename
1,575
def sequential_to_momentum_net(module: torch.nn.Sequential, split_dim=1, coupling_forward: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None, coupling_inverse: typing.Optional[typing.List[typing.Optional[typing.Callable]]] = None, memory_mode: MemoryModes = MemoryModes.autograd_function, target_device: str = "", fused_optimizer: FUSED_OPTIMIZER = None, residual: bool = False, beta: float = 0.9) -> ReversibleSequential: """ Creates a sequential MomentumNet by unrolling a nn.Sequential module and dispatching to `momentum_net()` :param module: An existing nn.Sequential module that should be converted into a ReversibleSequential module. :param split_dim: RevNets require two streams. This parameter specifies which dimension to split in half to create the two streams. `None` would mean the input gets replicated for both streams. It's usually best to split along the features, which is why the default (1) is compatible with convolutions. :param coupling_forward: RevNet uses y0 = (x0 + f(x1)) as a coupling function, but this allows you to set a custom one. For example, MomentumNet (https://arxiv.org/abs/2102.07870) uses y0 = (beta * x0 + (1 - beta) * f(x1)). The inputs to the coupling function are the residual stream and the function output. For more information, look at the examples. default = revnet couplint :param coupling_inverse: The inverse of the coupling function. default = revnet inverse :param memory_mode: One of `MemoryModes`'s values. Some things are only supported in one mode while others might only be supported in another. default = autograd function (highest coverage but spotty XLA support) :param target_device: Specifies where the parameters should be moved to before computing the forward and backward pass. This allows efficient CPU-offloading. default = no offloading (keep parameters on the device they're on) :param fused_optimizer: Allows an optimizer step to run while the model is computing its backward pass. This means that the gradients don't have to be fully instantiated anymore and can improve speed when used with cpu-offload due to asynchronous compute. It expects a function that generates an optimizer from a list of parameters. (like Adam.__init__) default = no fused optimizer step :param residual: Whether to "undo" a residual stream or not. Using y = f(x0) + x0 + x1 is generally not a good idea, so this would subtract `x0` from y allowing you to patch existing residual modules without modifying their code. :param beta: MomentumNet beta value that controls how much of the velocity stream is kept. :return: Instantiated MomentumNet (instance of `ReversibleSequential`) """ return momentum_net(*maybe_residual_to_plain(module, residual), split_dim=split_dim, coupling_forward=coupling_forward, coupling_inverse=coupling_inverse, memory_mode=memory_mode, target_device=target_device, beta=beta, fused_optimizer=fused_optimizer)
1,576
def version(): # static void version() """ TOWRITE """ print("%s %s\n" % (_appName_, _appVer_)) global exitApp exitApp = True
1,577
def user_view(request, name): """Render the view page for users""" # argument is the login name, not the uuid in Cassandra user = User.find(name) if not user: return redirect("users:home") ctx = { "req_user": request.user, "user_obj": user, "groups": [Group.find(gname) for gname in user.groups], } return render(request, "users/view.html", ctx)
1,578
def grelha_nr_colunas(g): """ grelha_nr_colunas: grelha --> inteiro positivo grelha_nr_colunas(g) devolve o numero de colunas da grelha g. """ return len(g[0])
1,579
def rmsd(array_a, array_b): """ Calculate the RMSD between two 1d arrays Parameters ---------- array_a, array_b : 1d numpy arrays The arrays to be compared Returns ------- rmsd : float The Root Mean Square Deviation of the elements of the array """ diff = array_a - array_b diff2 = np.square(diff) diff2_sum = np.sum(diff2) norm_diff2_sum = diff2_sum/len(array_a) rmsd = np.sqrt(norm_diff2_sum) return rmsd
1,580
def readFile(sFile, sMode = 'rb'): """ Reads the entire file. """ oFile = open(sFile, sMode); sRet = oFile.read(); oFile.close(); return sRet;
1,581
def VI_cgivens_d( a, b): """ returns cos, sin, r """ c = vsip_cmplx_d(0.0,0.0) s = vsip_cmplx_d(0.0,0.0) r = vsip_cmplx_d(0.0,0.0) am = vsip_cmag_d(a) bm = vsip_cmag_d(b) if am == 0.0: r.r = b.r; r.i=b.i; s.r = 1.0; else: scale = am + bm; alpha = vsip_cmplx_d(a.r/am, a.i/am) scalesq = scale * scale norm = scale * sqrt((am*am)/scalesq + (bm * bm)/scalesq) c.r =am/norm s.r = (alpha.r * b.r + alpha.i * b.i)/norm s.i = (-alpha.r * b.i + alpha.i * b.r)/norm r.r = alpha.r * norm; r.i = alpha.i * norm return (c,s,r)
1,582
def _no_op(data): """ An on_load_batch callback that does nothing. """
1,583
def documint_request_factory(request): """ Create a function that issues a request to a Documint endpoint. Status codes outside the 2xx range are treated as errors. If error responses are JSON then `DocumintError` is raised, otherwise `MalformedDocumintError` is raised. If the status code indicates success, the `IResponse` is returned. """ def _raise_error(data, response): if content_type(response.headers) == b'application/json': try: causes = json.loads(data).get(u'causes', []) raise DocumintError( causes=[DocumintErrorCause(cause.get(u'type'), cause.get(u'reason'), cause.get(u'description')) for cause in causes]) except ValueError: pass raise MalformedDocumintError(data) def _check_status(response): if 200 <= response.code < 300: return response d = response.content() d.addCallback(_raise_error, response) return d def _request(*a, **kw): d = request(*a, **kw) d.addCallback(_check_status) return d return _request
1,584
def roipac_header(file_path, params): """ Function to obtain a header for roipac interferogram file or converted geotiff. """ rsc_file = os.path.join(params[cf.DEM_HEADER_FILE]) if rsc_file is not None: projection = parse_header(rsc_file)[ifc.PYRATE_DATUM] else: raise RoipacException('No DEM resource/header file is ' 'provided') if file_path.endswith('_dem.tif'): header_file = os.path.join(params[cf.DEM_HEADER_FILE]) elif file_path.endswith('_unw.tif'): base_file = file_path[:-8] header_file = base_file + '.unw.' + ROI_PAC_HEADER_FILE_EXT else: header_file = "%s.%s" % (file_path, ROI_PAC_HEADER_FILE_EXT) header = manage_header(header_file, projection) return header
1,585
def find_exe_in_path(exe, bypass_permissions_check=None, add_exe_to_path=None): """ Check that an executable exists in $PATH """ paths = os.environ["PATH"].split(os.pathsep) for path in paths: fullexe = os.path.join(path,exe) if os.path.exists(fullexe): if not bypass_permissions_check: check_file_executable(fullexe) if add_exe_to_path: path=fullexe return path elif os.path.isdir(path): # allow for filename filter matching exematch = fnmatch.filter(os.listdir(path),exe) if exematch and os.path.exists(os.path.join(path,exematch[0])): if not bypass_permissions_check: check_file_executable(os.path.join(path,exematch[0])) if add_exe_to_path: path=os.path.join(path,exematch[0]) return path return None
1,586
def test_tb_pipeline(): """ Test case to ensure that the Hi-C pipeline code works. Running the pipeline with the test data from the command line: .. code-block:: none runcompss \\ --lang=python \\ --library_path=/home/compss/bin \\ --pythonpath=/<pyenv_virtenv_dir>//lib/python2.7/site-packages/ \\ --log_level=debug \\ process_hic.py \\ --taxon_id 9606 \\ --genome /<dataset_dir>/tb.Human.GCA_000001405.22_gem.fasta \\ --assembly GRCh38 \\ --file1 /<dataset_dir>/tb.Human.SRR1658573_1.fastq \\ --file2 /<dataset_dir>/tb.Human.SRR1658573_2.fastq \\ --genome_gem /<dataset_dir>/tb.Human.GCA_000001405.22_gem.fasta.gem \\ --taxon_id 9606 \\ --enzyme_name MboI \\ --resolutions 10000,100000 \\ --windows1 1,100 \\ --windows2 1,100 \\ --normalized 1 \\ --tag tb.Human.SRR1658573 \\ --window_type frag \\ """ resource_path = os.path.join(os.path.dirname(__file__), "data/") files = [ resource_path + 'tb.Human.GCA_000001405.22_gem.fasta', resource_path + 'tb.Human.GCA_000001405.22_gem.fasta.gem', resource_path + 'tb.Human.SRR1658573_1.fastq', resource_path + 'tb.Human.SRR1658573_2.fastq' ] metadata = { 'assembly': 'GRCh38', 'expt_name': 'tb.Human.SRR1658573', 'enzyme_name': 'MboI', 'windows1': ((1, '100')), 'windows2': ((1, '100')), 'window_type': 'frag', 'resolutions': [10000, 100000], 'normalized': False, 'hdf5': True, } hic_handle = process_hic({"execution": resource_path}) hic_files, hic_meta = hic_handle.run(files, metadata, []) # pylint: disable=unused-variable print(hic_files) # Add tests for all files created assert os.path.isfile(hic_files[0]) is True assert os.path.getsize(hic_files[0]) > 0
1,587
def skip_for_tf2(f): """Decorator that skips tests when using TensorFlow 2.""" def test_wrapper(*args, **kwargs): """Wraps the decorated function to determine whether to skip.""" # Extract test case instance from args. self = args[0] try: # If tf.contrib doesn't exist, we are in TF 2.0. _ = tf.contrib _ = tf.contrib.estimator.regression_head( loss_reduction=tf.compat.v1.losses.Reduction.SUM_OVER_BATCH_SIZE) except (AttributeError, ImportError): self.skipTest("Skipping test in TF 2.0.") return f(*args, **kwargs) return test_wrapper
1,588
def clean_logfile(logfile_lines,to_remove): """Remove yaml fields from a list of lines. Removes from a set of lines the yaml_fields contained in the to_remove list. Arguments: logfile_lines (list): list of the lines of the logfile. Generated from a file by e.g. :py:meth:`~io.IOBase.readlines`. to_remove (list): list of keys to remove from logfile_lines Returns: list of lines where the removed keys have as values the `"<folded>"` string """ line_rev=logfile_lines #list of the lines of the logfile #loop in the reversed from (such as to parse by blocks) extra_lines=20 #internal variable to be customized line_rev.reverse() #clean the log cleaned_logfile=[] removed=[] #for line in line_rev: #line_iter: while len(line_rev) >0: line=line_rev.pop() to_print=line #check if the line contains interesting information for remove_it in to_remove : stream_list=[] #line without comments valid_line=line.split('#')[0] spaces='nospace' #control that the string between the key and the semicolon is only spaces if remove_it in valid_line and ":" in valid_line: #print "here",remove_it,remove_it in valid_line and ":" in valid_line,valid_line starting_point=valid_line.find(remove_it) tmp_buf=valid_line[:starting_point] #find the closest comma to the staring point, if exists tmp_buf=tmp_buf[::-1] starting_comma=tmp_buf.find(',') if starting_comma <0: st=0 tmp_buf=tmp_buf[st:] tmp_buf=tmp_buf[::-1] tmp_buf=tmp_buf.strip(' ') #print "there",tmp_buf,'starting',starting_point,len(tmp_buf) valid_line= valid_line[starting_point+len(remove_it):] spaces= valid_line[1:valid_line.find(':')] #if remove_it+':' in line.split('#')[0]: if len(spaces.strip(' ')) == 0 and len(tmp_buf)==0: #this means that the key has been found #creates a new Yaml document starting from the line #treat the rest of the line following the key to be removed header=''.join(line.split(':')[1:]) header=header.rstrip()+'\n' #eliminate the anchor header=header.lstrip(' ') header=header.lstrip('*') if len(header) > 0 : stream_list.append(header) #part to be printed, updated to_print = line.split(':')[0] + ": <folded> \n" #then check when the mapping will end: while True: #create a stream with extra_lines block for i in range(0,min(extra_lines,len(line_rev))): stream_list.append(line_rev.pop()) #create a stream to be parsed stream=''.join(stream_list) #then parse the stream until the last valid position has been found try: for i in yaml.parse(stream,Loader=yaml.CLoader): endpos=i.end_mark.index except Exception(e): # print 'error',str(e),stream #convert back the valid stream into a list #if needed the stream can be loaded into a document item_list=stream[:endpos].split('\n') #if lengths are different there is no need to add lines if len(item_list) != len(stream_list): #last line might be shorter, therefore treat it separately last_line=item_list.pop() #purge the stream for item in item_list: stream_list.remove(item+'\n') #extract the remaining line which should be compared with the last one strip_size=len(last_line.rstrip()) if strip_size > 0: first_line=stream_list.pop(0)[strip_size:] if '*' in first_line or '&' in first_line: first_line='' #eliminate anchors else: first_line='' #then put the rest in the line to be treated to_print.rstrip('\n') to_print += first_line+'\n' # the item has been found break stream_list.reverse() #put back the unused part in the document line_rev.extend(stream_list) # mark that the key has been removed if (remove_it not in removed): removed.append(remove_it) write('removed: ',remove_it) # then print out the line cleaned_logfile.append(to_print) # check that everything has been removed, at least once if (set(removed) != set(to_remove)): write('WARNING, not all the requested items have been removed!') write('To_remove : ',to_remove) write('removed : ',removed) write('Difference: ',list(set(to_remove) - set(removed) )) return cleaned_logfile
1,589
def callback_function(bus): """ Function we want to call from the background_thread function This function will be called when an interrupt is triggered from a state change on pin 1 """ print("interrupt triggered") if bus.read_pin(1) == 0: print("pin 1 was set low") else: print("pin 1 was set high")
1,590
def no_red_sum(tokens): """Using import json is cheating, let's parse it ourselves in a sinlge pass. Hope you like stacks.""" sums = [0] stack = [] is_red = False for token in tokens: if token == 'red' and not is_red and stack[-1] == '{': is_red = True sums[-1] = 0 stack.append('red') elif token == '{': sums.append(0) stack.append('{') elif token == '}': last_sum = sums.pop() sums[-1] += last_sum if stack[-1] == 'red': stack.pop() is_red = False stack.pop() elif token == '[': stack.append('[') sums.append(0) elif token == ']': stack.pop() last_sum = sums.pop() sums[-1] += last_sum elif not is_red: sums[-1] += neg_safe_cast(token) assert len(sums) == 1 return sums.pop()
1,591
def get_all_projects(): """ Return a list with all the projects (open and closed). """ return gazu.project.all_projects()
1,592
def test_view_permissions_has_all(authed_request, test_view): """Should be True if view lists multiple action permissions and all are on User""" test = HasViewSetActionPermissions() authed_request.user.perms.append('list_permission') authed_request.user.perms.append('list_permission2') test_view.action_user_permissions = {'list': ['list_permission', 'list_permission2']} assert test.has_permission(authed_request, test_view)
1,593
def install(opts): """ Install one or more resources. """ resources = _load(opts.resources, opts.output_dir) if opts.all: opts.resource_names = ALL success = _install(resources, opts.resource_names, opts.mirror_url, opts.destination, opts.skip_top_level) if success: if not opts.quiet: print("All resources successfully installed") return 0 else: if not opts.quiet: invalid = _invalid(resources, opts.resource_names) print("Unable to install some resources: {}".format(', '.join(invalid))) return 1
1,594
def seq2seq_att(mems, lengths, state, att_net=None): """ :param mems: [B, T, D_mem] This are the memories. I call memory for this variable because I think attention is just like read something and then make alignments with your memories. This memory here is usually the input hidden state of the encoder. :param lengths: [B] :param state: [B, D_state] I call state for this variable because it's the state I percepts at this time step. :param att_net: This is the attention network that will be used to calculate the alignment score between state and memories. input of the att_net is mems and state with shape: mems: [exB, D_mem] state: [exB, D_state] return of the att_net is [exB, 1] So any function that map a vector to a scalar could work. :return: [B, D_result] """ d_state = state.size(1) if not att_net: return state else: batch_list_mems = [] batch_list_state = [] for i, l in enumerate(lengths): b_mems = mems[i, :l] # [T, D_mem] batch_list_mems.append(b_mems) b_state = state[i].expand(b_mems.size(0), d_state) # [T, D_state] batch_list_state.append(b_state) packed_sequence_mems = torch.cat(batch_list_mems, 0) # [sum(l), D_mem] packed_sequence_state = torch.cat(batch_list_state, 0) # [sum(l), D_state] align_score = att_net(packed_sequence_mems, packed_sequence_state) # [sum(l), 1] # The score grouped as [(a1, a2, a3), (a1, a2), (a1, a2, a3, a4)]. # aligned_seq = packed_sequence_mems * align_score start = 0 result_list = [] for i, l in enumerate(lengths): end = start + l b_mems = packed_sequence_mems[start:end, :] # [l, D_mems] b_score = align_score[start:end, :] # [l, 1] softed_b_score = F.softmax(b_score.transpose(0, 1)).transpose(0, 1) # [l, 1] weighted_sum = torch.sum(b_mems * softed_b_score, dim=0, keepdim=False) # [D_mems] result_list.append(weighted_sum) start = end result = torch.stack(result_list, dim=0) return result
1,595
def SaveImage(Im, fname, useCompression=True): """Save an image in any known format""" # get file extension ext = os.path.splitext(fname)[1].lower() # dispatch based on file extension if ext == '.npy': SaveImageNPY(Im, fname) elif ext == '.npz': SaveImageNPZ(Im, fname, useCompression=useCompression) elif ext == '.png': common.SavePNGImage(Im, fname) else: try: common.SaveITKImage(Im, fname, useCompression=useCompression) except IOError: raise Exception('File extension "'+ext+'" unknown.')
1,596
def convert_for_webkit(new_path, filename, reference_support_info, host=Host()): """ Converts a file's |contents| so it will function correctly in its |new_path| in Webkit. Returns the list of modified properties and the modified text if the file was modifed, None otherwise.""" contents = host.filesystem.read_binary_file(filename) converter = _W3CTestConverter(new_path, filename, reference_support_info, host) if filename.endswith('.css'): return converter.add_webkit_prefix_to_unprefixed_properties(contents.decode('utf-8')) else: converter.feed(contents.decode('utf-8')) converter.close() return converter.output()
1,597
def test_atomic_positive_integer_min_exclusive_3_nistxml_sv_iv_atomic_positive_integer_min_exclusive_4_3(mode, save_output, output_format): """ Type atomic/positiveInteger is restricted by facet minExclusive with value 506558727413711217. """ assert_bindings( schema="nistData/atomic/positiveInteger/Schema+Instance/NISTSchema-SV-IV-atomic-positiveInteger-minExclusive-4.xsd", instance="nistData/atomic/positiveInteger/Schema+Instance/NISTXML-SV-IV-atomic-positiveInteger-minExclusive-4-3.xml", class_name="NistschemaSvIvAtomicPositiveIntegerMinExclusive4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
1,598
def create_partial_pickle(flnc_files, chunked_nfl_files, out_pickle): """ Parameters: flnc_files -- full-length non-chimeric files in bins chunked_nfl_files -- chunked non-chimeric files out_pickle -- output pickle for saving PolishChunkTask objects """ n_bins = len(flnc_files) n_nfl_chunks = max(1, len(chunked_nfl_files)) log.info("Writing %s ice_partial chunk tasks to %s.", str(n_bins * n_nfl_chunks), out_pickle) p = ChunkTasksPickle() for i, flnc_file in enumerate(flnc_files): log.debug("Processing cluster bin index=%s.", i) cluster_out_dir = _get_cluster_out_dir(flnc_file) for j, nfl_file in enumerate(chunked_nfl_files): # Create Partial chunk tasks. task_ = PartialChunkTask(cluster_bin_index=i, flnc_file=flnc_file, cluster_out_dir=cluster_out_dir, nfl_file=nfl_file, nfl_index=j, n_nfl_chunks=n_nfl_chunks) p.append(task_) p.write(out_pickle) log.info("Saved %s partial chunk tasks to %s.", str(n_bins * n_nfl_chunks), out_pickle)
1,599