LLM Lora (Uncensored)
Collection
lora models to uncensor llm with thinking
•
9 items
•
Updated
axolotl version: 0.8.0.dev0
adapter: lora
base_model: ibm-granite/granite-3.3-2b-instruct
bf16: auto
dataset_processes: 32
per_device_train_batch_size: 1
datasets:
- message_property_mappings:
content: content
role: role
path: ICEPVP8977/Uncensored_Small_Test_Time_Compute
type: alpaca
trust_remote_code: false
gradient_accumulation_steps: 1
gradient_checkpointing: false
learning_rate: 0.0002
lisa_layers_attribute: model.layers
load_best_model_at_end: false
load_in_4bit: true
load_in_8bit: false
lora_alpha: 16
lora_dropout: 0.05
lora_r: 8
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
loraplus_lr_embedding: 1.0e-06
lr_scheduler: cosine
max_prompt_len: 512
mean_resizing_embeddings: false
micro_batch_size: 1
num_epochs: 1.0
optimizer: paged_adamw_8bit
output_dir: ./outputs/mymodel
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 10000
qlora_sharded_model_loading: false
ray_num_workers: 1
resources_per_worker:
GPU: 1
sample_packing_bin_size: 200
sample_packing_group_size: 100000
save_only_model: false
save_safetensors: true
sequence_len: 4096
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
trl:
log_completions: false
ref_model_mixup_alpha: 0.9
ref_model_sync_steps: 64
sync_ref_model: false
use_vllm: false
vllm_device: auto
vllm_dtype: auto
vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.0
weight_decay: 0.0
Fine-tuned version of ibm-granite/granite-3.3-2b-instruct on the ICEPVP8977/Uncensored_Small_Test_Time_Compute dataset.
This lora model will fully uncensor the ibm granite 3.3 2b model, use alpaca instruction template.
Base model
ibm-granite/granite-3.3-2b-base