Spaces:
Sleeping
Sleeping
import os | |
import sys | |
if "APP_PATH" in os.environ: | |
app_path = os.path.abspath(os.environ["APP_PATH"]) | |
if os.getcwd() != app_path: | |
# fix sys.path for import | |
os.chdir(app_path) | |
if app_path not in sys.path: | |
sys.path.append(app_path) | |
import gradio as gr | |
import torch | |
import torchaudio | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import re | |
import random | |
import string | |
from audioseal import AudioSeal | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load generator if not already loaded in reload mode | |
if 'generator' not in globals(): | |
generator = AudioSeal.load_generator("audioseal_wm_16bits") | |
generator = generator.to(device) | |
generator_nbytes = int(generator.msg_processor.nbits / 8) | |
# Load detector if not already loaded in reload mode | |
if 'detector' not in globals(): | |
detector = AudioSeal.load_detector("audioseal_detector_16bits") | |
detector = detector.to(device) | |
def load_audio(file): | |
wav, sample_rate = torchaudio.load(file) | |
return wav, sample_rate | |
def generate_msg_pt_by_format_string(format_string, bytes_count): | |
msg_hex = format_string.replace("-", "") | |
hex_length = bytes_count * 2 | |
binary_list = [] | |
for i in range(0, len(msg_hex), hex_length): | |
chunk = msg_hex[i:i+hex_length] | |
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8) | |
binary_list.append([int(b) for b in binary]) | |
# torch.randint(0, 2, (1, 16), dtype=torch.int32) | |
msg_pt = torch.tensor(binary_list, dtype=torch.int32) | |
return msg_pt.to(device) | |
def embed_watermark(audio, sr, msg_pt): | |
original_audio = audio.to(device) | |
# If the audio has more than one channel, average all channels to 1 channel | |
if original_audio.shape[0] > 1: | |
mono_audio = torch.mean(original_audio, dim=0, keepdim=True) | |
else: | |
mono_audio = original_audio | |
# We add the batch dimension to the single audio to mimic the batch watermarking | |
batched_audio = mono_audio.unsqueeze(0) | |
watermark = generator.get_watermark(batched_audio, sr, message=msg_pt) | |
watermarked_audio = batched_audio + watermark | |
# Alternatively, you can also call forward() function directly with different tune-down / tune-up rate | |
# watermarked_audio = generator(audios, sample_rate=sr, alpha=1) | |
# Need remove batch dimension and to cpu | |
return watermarked_audio.squeeze(0).detach().cpu() | |
def generate_format_string_by_msg_pt(msg_pt, bytes_count): | |
hex_length = bytes_count * 2 | |
binary_int = 0 | |
for bit in msg_pt: | |
binary_int = (binary_int << 1) | int(bit.item()) | |
hex_string = format(binary_int, f'0{hex_length}x') | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
format_hex = "-".join(split_hex) | |
return hex_string, format_hex | |
def detect_watermark(audio, sr): | |
watermarked_audio = audio.to(device) | |
# If the audio has more than one channel, average all channels to 1 channel | |
if watermarked_audio.shape[0] > 1: | |
mono_audio = torch.mean(watermarked_audio, dim=0, keepdim=True) | |
else: | |
mono_audio = watermarked_audio | |
# We add the batch dimension to the single audio to mimic the batch watermarking | |
batched_audio = mono_audio.unsqueeze(0) | |
result, message = detector.detect_watermark(batched_audio, sr) | |
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame | |
# A watermarked audio should have pred_prob[:, 1, :] > 0.5 | |
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1. | |
# message will be a random tensor if the detector detects no watermarking from the audio | |
pred_prob, message_prob = detector(batched_audio, sr) | |
return result, message, pred_prob, message_prob | |
def get_waveform_and_specgram(waveform, sample_rate): | |
# If the audio has more than one channel, average all channels to 1 channel | |
if waveform.shape[0] > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
waveform = waveform.squeeze().detach().cpu().numpy() | |
num_frames = waveform.shape[-1] | |
time_axis = torch.arange(0, num_frames) / sample_rate | |
figure, (ax1, ax2) = plt.subplots(2, 1) | |
ax1.plot(time_axis, waveform, linewidth=1) | |
ax1.grid(True) | |
ax2.specgram(waveform, Fs=sample_rate) | |
figure.suptitle(f"Waveform and specgram") | |
return figure | |
def generate_hex_format_regex(bytes_count): | |
hex_length = bytes_count * 2 | |
hex_string = 'F' * hex_length | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
format_like = "-".join(split_hex) | |
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$' | |
return format_like, regex_pattern | |
def generate_hex_random_message(bytes_count): | |
hex_length = bytes_count * 2 | |
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length)) | |
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)] | |
random_str = "-".join(split_hex) | |
return random_str, "".join(split_hex) | |
with gr.Blocks(title="AudioSeal") as demo: | |
gr.Markdown(""" | |
# AudioSeal Demo | |
Find the project [here](https://github.com/facebookresearch/audioseal.git). | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Embed Watermark"): | |
with gr.Row(): | |
with gr.Column(): | |
embedding_aud = gr.Audio(label="Input Audio", type="filepath") | |
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information") | |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks") | |
format_like, regex_pattern = generate_hex_format_regex(generator_nbytes) | |
msg, _ = generate_hex_random_message(generator_nbytes) | |
embedding_msg = gr.Textbox( | |
label=f"Message ({generator_nbytes} bytes hex string)", | |
info=f"format like {format_like}", | |
value=msg, | |
interactive=False, show_copy_button=True) | |
embedding_btn = gr.Button("Embed Watermark") | |
with gr.Column(): | |
marked_aud = gr.Audio(label="Output Audio", show_download_button=True) | |
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False) | |
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False) | |
def change_embedding_type(type): | |
if type == "random": | |
msg, _ = generate_hex_random_message(generator_nbytes) | |
return gr.update(interactive=False, value=msg) | |
else: | |
return gr.update(interactive=True) | |
embedding_type.change( | |
fn=change_embedding_type, | |
inputs=[embedding_type], | |
outputs=[embedding_msg] | |
) | |
def check_embedding_msg(msg): | |
if not re.match(regex_pattern, msg): | |
gr.Warning( | |
f"Invalid format. Please use like '{format_like}'", | |
duration=0) | |
embedding_msg.change( | |
fn=check_embedding_msg, | |
inputs=[embedding_msg], | |
outputs=[] | |
) | |
def run_embed_watermark(file, show_specgram, type, msg): | |
if file is None: | |
raise gr.Erro("No file uploaded", duration=5) | |
if not re.match(regex_pattern, msg): | |
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5) | |
audio_original, rate = load_audio(file) | |
msg_pt = generate_msg_pt_by_format_string(msg, generator_nbytes) | |
audio_watermarked = embed_watermark(audio_original, rate, msg_pt) | |
output = rate, audio_watermarked.squeeze().numpy().astype(np.float32) | |
if show_specgram: | |
fig_original = get_waveform_and_specgram(audio_original, rate) | |
fig_watermarked = get_waveform_and_specgram(audio_watermarked, rate) | |
return [ | |
output, | |
gr.update(visible=True, value=fig_original), | |
gr.update(visible=True, value=fig_watermarked)] | |
else: | |
return [ | |
output, | |
gr.update(visible=False), | |
gr.update(visible=False)] | |
embedding_btn.click( | |
fn=run_embed_watermark, | |
inputs=[embedding_aud, embedding_specgram, embedding_type, embedding_msg], | |
outputs=[marked_aud, specgram_original, specgram_watermarked] | |
) | |
with gr.TabItem("Detect Watermark"): | |
with gr.Row(): | |
with gr.Column(): | |
detecting_aud = gr.Audio(label="Input Audio", type="filepath") | |
detecting_btn = gr.Button("Detect Watermark") | |
with gr.Column(): | |
predicted_messages = gr.JSON(label="Detected Messages") | |
def run_detect_watermark(file): | |
if file is None: | |
raise gr.Error("No file uploaded", duration=5) | |
audio_watermarked, rate = load_audio(file) | |
result, message, pred_prob, message_prob = detect_watermark(audio_watermarked, rate) | |
_, fromat_msg = generate_format_string_by_msg_pt(message[0], generator_nbytes) | |
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1) | |
# Create message output as JSON | |
message_json = { | |
"socre": result, | |
"message": fromat_msg, | |
"frames_count_all": pred_prob.shape[2], | |
"frames_count_above_05": sum_above_05[0].item(), | |
"bits_probability": message_prob[0].tolist(), | |
"bits_massage": message[0].tolist() | |
} | |
return message_json | |
detecting_btn.click( | |
fn=run_detect_watermark, | |
inputs=[detecting_aud], | |
outputs=[predicted_messages] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |