Spaces:
Sleeping
Sleeping
File size: 10,429 Bytes
077e8af cb6069f 077e8af cb6069f 077e8af cb6069f 077e8af cb6069f 077e8af ef7bf13 cb6069f ef7bf13 077e8af ef7bf13 077e8af ef7bf13 077e8af ef7bf13 077e8af ef7bf13 cb6069f ef7bf13 077e8af ef7bf13 077e8af ef7bf13 077e8af cb6069f 077e8af cb6069f 077e8af cb6069f 077e8af cb6069f 077e8af cb6069f 077e8af ef7bf13 077e8af ef7bf13 077e8af cb6069f 077e8af cb6069f 077e8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import sys
if "APP_PATH" in os.environ:
app_path = os.path.abspath(os.environ["APP_PATH"])
if os.getcwd() != app_path:
# fix sys.path for import
os.chdir(app_path)
if app_path not in sys.path:
sys.path.append(app_path)
import gradio as gr
import torch
import torchaudio
import numpy as np
import matplotlib.pyplot as plt
import re
import random
import string
from audioseal import AudioSeal
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load generator if not already loaded in reload mode
if 'generator' not in globals():
generator = AudioSeal.load_generator("audioseal_wm_16bits")
generator = generator.to(device)
generator_nbytes = int(generator.msg_processor.nbits / 8)
# Load detector if not already loaded in reload mode
if 'detector' not in globals():
detector = AudioSeal.load_detector("audioseal_detector_16bits")
detector = detector.to(device)
def load_audio(file):
wav, sample_rate = torchaudio.load(file)
return wav, sample_rate
def generate_msg_pt_by_format_string(format_string, bytes_count):
msg_hex = format_string.replace("-", "")
hex_length = bytes_count * 2
binary_list = []
for i in range(0, len(msg_hex), hex_length):
chunk = msg_hex[i:i+hex_length]
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
binary_list.append([int(b) for b in binary])
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
return msg_pt.to(device)
def embed_watermark(audio, sr, msg_pt):
original_audio = audio.to(device)
# If the audio has more than one channel, average all channels to 1 channel
if original_audio.shape[0] > 1:
mono_audio = torch.mean(original_audio, dim=0, keepdim=True)
else:
mono_audio = original_audio
# We add the batch dimension to the single audio to mimic the batch watermarking
batched_audio = mono_audio.unsqueeze(0)
watermark = generator.get_watermark(batched_audio, sr, message=msg_pt)
watermarked_audio = batched_audio + watermark
# Alternatively, you can also call forward() function directly with different tune-down / tune-up rate
# watermarked_audio = generator(audios, sample_rate=sr, alpha=1)
# Need remove batch dimension and to cpu
return watermarked_audio.squeeze(0).detach().cpu()
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
hex_length = bytes_count * 2
binary_int = 0
for bit in msg_pt:
binary_int = (binary_int << 1) | int(bit.item())
hex_string = format(binary_int, f'0{hex_length}x')
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_hex = "-".join(split_hex)
return hex_string, format_hex
def detect_watermark(audio, sr):
watermarked_audio = audio.to(device)
# If the audio has more than one channel, average all channels to 1 channel
if watermarked_audio.shape[0] > 1:
mono_audio = torch.mean(watermarked_audio, dim=0, keepdim=True)
else:
mono_audio = watermarked_audio
# We add the batch dimension to the single audio to mimic the batch watermarking
batched_audio = mono_audio.unsqueeze(0)
result, message = detector.detect_watermark(batched_audio, sr)
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
# message will be a random tensor if the detector detects no watermarking from the audio
pred_prob, message_prob = detector(batched_audio, sr)
return result, message, pred_prob, message_prob
def get_waveform_and_specgram(waveform, sample_rate):
# If the audio has more than one channel, average all channels to 1 channel
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
waveform = waveform.squeeze().detach().cpu().numpy()
num_frames = waveform.shape[-1]
time_axis = torch.arange(0, num_frames) / sample_rate
figure, (ax1, ax2) = plt.subplots(2, 1)
ax1.plot(time_axis, waveform, linewidth=1)
ax1.grid(True)
ax2.specgram(waveform, Fs=sample_rate)
figure.suptitle(f"Waveform and specgram")
return figure
def generate_hex_format_regex(bytes_count):
hex_length = bytes_count * 2
hex_string = 'F' * hex_length
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_like = "-".join(split_hex)
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
return format_like, regex_pattern
def generate_hex_random_message(bytes_count):
hex_length = bytes_count * 2
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
random_str = "-".join(split_hex)
return random_str, "".join(split_hex)
with gr.Blocks(title="AudioSeal") as demo:
gr.Markdown("""
# AudioSeal Demo
Find the project [here](https://github.com/facebookresearch/audioseal.git).
""")
with gr.Tabs():
with gr.TabItem("Embed Watermark"):
with gr.Row():
with gr.Column():
embedding_aud = gr.Audio(label="Input Audio", type="filepath")
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
format_like, regex_pattern = generate_hex_format_regex(generator_nbytes)
msg, _ = generate_hex_random_message(generator_nbytes)
embedding_msg = gr.Textbox(
label=f"Message ({generator_nbytes} bytes hex string)",
info=f"format like {format_like}",
value=msg,
interactive=False, show_copy_button=True)
embedding_btn = gr.Button("Embed Watermark")
with gr.Column():
marked_aud = gr.Audio(label="Output Audio", show_download_button=True)
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)
def change_embedding_type(type):
if type == "random":
msg, _ = generate_hex_random_message(generator_nbytes)
return gr.update(interactive=False, value=msg)
else:
return gr.update(interactive=True)
embedding_type.change(
fn=change_embedding_type,
inputs=[embedding_type],
outputs=[embedding_msg]
)
def check_embedding_msg(msg):
if not re.match(regex_pattern, msg):
gr.Warning(
f"Invalid format. Please use like '{format_like}'",
duration=0)
embedding_msg.change(
fn=check_embedding_msg,
inputs=[embedding_msg],
outputs=[]
)
def run_embed_watermark(file, show_specgram, type, msg):
if file is None:
raise gr.Erro("No file uploaded", duration=5)
if not re.match(regex_pattern, msg):
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)
audio_original, rate = load_audio(file)
msg_pt = generate_msg_pt_by_format_string(msg, generator_nbytes)
audio_watermarked = embed_watermark(audio_original, rate, msg_pt)
output = rate, audio_watermarked.squeeze().numpy().astype(np.float32)
if show_specgram:
fig_original = get_waveform_and_specgram(audio_original, rate)
fig_watermarked = get_waveform_and_specgram(audio_watermarked, rate)
return [
output,
gr.update(visible=True, value=fig_original),
gr.update(visible=True, value=fig_watermarked)]
else:
return [
output,
gr.update(visible=False),
gr.update(visible=False)]
embedding_btn.click(
fn=run_embed_watermark,
inputs=[embedding_aud, embedding_specgram, embedding_type, embedding_msg],
outputs=[marked_aud, specgram_original, specgram_watermarked]
)
with gr.TabItem("Detect Watermark"):
with gr.Row():
with gr.Column():
detecting_aud = gr.Audio(label="Input Audio", type="filepath")
detecting_btn = gr.Button("Detect Watermark")
with gr.Column():
predicted_messages = gr.JSON(label="Detected Messages")
def run_detect_watermark(file):
if file is None:
raise gr.Error("No file uploaded", duration=5)
audio_watermarked, rate = load_audio(file)
result, message, pred_prob, message_prob = detect_watermark(audio_watermarked, rate)
_, fromat_msg = generate_format_string_by_msg_pt(message[0], generator_nbytes)
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)
# Create message output as JSON
message_json = {
"socre": result,
"message": fromat_msg,
"frames_count_all": pred_prob.shape[2],
"frames_count_above_05": sum_above_05[0].item(),
"bits_probability": message_prob[0].tolist(),
"bits_massage": message[0].tolist()
}
return message_json
detecting_btn.click(
fn=run_detect_watermark,
inputs=[detecting_aud],
outputs=[predicted_messages]
)
if __name__ == "__main__":
demo.launch()
|