File size: 10,429 Bytes
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
077e8af
 
 
 
cb6069f
 
077e8af
 
 
 
cb6069f
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
077e8af
ef7bf13
 
cb6069f
 
 
ef7bf13
 
 
 
 
 
077e8af
ef7bf13
077e8af
ef7bf13
077e8af
 
 
 
ef7bf13
 
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7bf13
cb6069f
 
 
ef7bf13
 
 
 
 
 
077e8af
ef7bf13
077e8af
 
 
 
 
ef7bf13
077e8af
 
 
cb6069f
 
 
 
 
 
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
 
077e8af
cb6069f
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
077e8af
ef7bf13
077e8af
 
ef7bf13
 
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6069f
077e8af
 
 
 
 
 
 
 
 
cb6069f
077e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import sys

if "APP_PATH" in os.environ:
    app_path = os.path.abspath(os.environ["APP_PATH"])
    if os.getcwd() != app_path:
        # fix sys.path for import
        os.chdir(app_path)
    if app_path not in sys.path:
        sys.path.append(app_path)

import gradio as gr

import torch
import torchaudio
import numpy as np
import matplotlib.pyplot as plt
import re
import random
import string
from audioseal import AudioSeal

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load generator if not already loaded in reload mode
if 'generator' not in globals():
    generator = AudioSeal.load_generator("audioseal_wm_16bits")
    generator = generator.to(device)
    generator_nbytes = int(generator.msg_processor.nbits / 8)

# Load detector if not already loaded in reload mode
if 'detector' not in globals():
    detector = AudioSeal.load_detector("audioseal_detector_16bits")
    detector = detector.to(device)


def load_audio(file):
    wav, sample_rate = torchaudio.load(file)
    return wav, sample_rate

def generate_msg_pt_by_format_string(format_string, bytes_count):
    msg_hex = format_string.replace("-", "")
    hex_length = bytes_count * 2
    binary_list = []
    for i in range(0, len(msg_hex), hex_length):
        chunk = msg_hex[i:i+hex_length]
        binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
        binary_list.append([int(b) for b in binary])
    # torch.randint(0, 2, (1, 16), dtype=torch.int32)
    msg_pt = torch.tensor(binary_list, dtype=torch.int32)
    return msg_pt.to(device)

def embed_watermark(audio, sr, msg_pt):
    original_audio = audio.to(device)

    # If the audio has more than one channel, average all channels to 1 channel
    if original_audio.shape[0] > 1:
        mono_audio = torch.mean(original_audio, dim=0, keepdim=True)
    else:
        mono_audio = original_audio

    # We add the batch dimension to the single audio to mimic the batch watermarking
    batched_audio = mono_audio.unsqueeze(0)

    watermark = generator.get_watermark(batched_audio, sr, message=msg_pt)

    watermarked_audio = batched_audio + watermark

    # Alternatively, you can also call forward() function directly with different tune-down / tune-up rate
    # watermarked_audio = generator(audios, sample_rate=sr, alpha=1)

    # Need remove batch dimension and to cpu
    return watermarked_audio.squeeze(0).detach().cpu()

def generate_format_string_by_msg_pt(msg_pt, bytes_count):
    hex_length = bytes_count * 2
    binary_int = 0
    for bit in msg_pt:
        binary_int = (binary_int << 1) | int(bit.item())
    hex_string = format(binary_int, f'0{hex_length}x')

    split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
    format_hex = "-".join(split_hex)

    return hex_string, format_hex

def detect_watermark(audio, sr):
    watermarked_audio = audio.to(device)

    # If the audio has more than one channel, average all channels to 1 channel
    if watermarked_audio.shape[0] > 1:
        mono_audio = torch.mean(watermarked_audio, dim=0, keepdim=True)
    else:
        mono_audio = watermarked_audio

    # We add the batch dimension to the single audio to mimic the batch watermarking
    batched_audio = mono_audio.unsqueeze(0)

    result, message = detector.detect_watermark(batched_audio, sr)

    # pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
    # A watermarked audio should have pred_prob[:, 1, :] > 0.5
    # message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
    # message will be a random tensor if the detector detects no watermarking from the audio
    pred_prob, message_prob = detector(batched_audio, sr)

    return result, message, pred_prob, message_prob

def get_waveform_and_specgram(waveform, sample_rate):
    # If the audio has more than one channel, average all channels to 1 channel
    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)

    waveform = waveform.squeeze().detach().cpu().numpy()

    num_frames = waveform.shape[-1]
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, (ax1, ax2) = plt.subplots(2, 1)

    ax1.plot(time_axis, waveform, linewidth=1)
    ax1.grid(True)
    ax2.specgram(waveform, Fs=sample_rate)

    figure.suptitle(f"Waveform and specgram")

    return figure

def generate_hex_format_regex(bytes_count):
    hex_length = bytes_count * 2
    hex_string = 'F' * hex_length
    split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
    format_like = "-".join(split_hex)
    regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
    return format_like, regex_pattern

def generate_hex_random_message(bytes_count):
    hex_length = bytes_count * 2
    hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
    split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
    random_str = "-".join(split_hex)
    return random_str, "".join(split_hex)

with gr.Blocks(title="AudioSeal") as demo:
    gr.Markdown("""
    # AudioSeal Demo

    Find the project [here](https://github.com/facebookresearch/audioseal.git).
    """)

    with gr.Tabs():
        with gr.TabItem("Embed Watermark"):
            with gr.Row():
                with gr.Column():
                    embedding_aud = gr.Audio(label="Input Audio", type="filepath")
                    embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")

                    embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")

                    format_like, regex_pattern = generate_hex_format_regex(generator_nbytes)
                    msg, _ = generate_hex_random_message(generator_nbytes)
                    embedding_msg = gr.Textbox(
                        label=f"Message ({generator_nbytes} bytes hex string)",
                        info=f"format like {format_like}",
                        value=msg,
                        interactive=False, show_copy_button=True)

                    embedding_btn = gr.Button("Embed Watermark")
                with gr.Column():
                    marked_aud = gr.Audio(label="Output Audio", show_download_button=True)
                    specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
                    specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)


            def change_embedding_type(type):
                if type == "random":
                    msg, _ = generate_hex_random_message(generator_nbytes)
                    return gr.update(interactive=False, value=msg)
                else:
                    return gr.update(interactive=True)
            embedding_type.change(
                fn=change_embedding_type,
                inputs=[embedding_type],
                outputs=[embedding_msg]
            )

            def check_embedding_msg(msg):
                if not re.match(regex_pattern, msg):
                    gr.Warning(
                        f"Invalid format. Please use like '{format_like}'",
                        duration=0)
            embedding_msg.change(
                fn=check_embedding_msg,
                inputs=[embedding_msg],
                outputs=[]
            )

            def run_embed_watermark(file, show_specgram, type, msg):
                if file is None:
                    raise gr.Erro("No file uploaded", duration=5)
                if not re.match(regex_pattern, msg):
                    raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)

                audio_original, rate = load_audio(file)
                msg_pt = generate_msg_pt_by_format_string(msg, generator_nbytes)
                audio_watermarked = embed_watermark(audio_original, rate, msg_pt)
                output = rate, audio_watermarked.squeeze().numpy().astype(np.float32)

                if show_specgram:
                    fig_original = get_waveform_and_specgram(audio_original, rate)
                    fig_watermarked = get_waveform_and_specgram(audio_watermarked, rate)
                    return [
                        output,
                        gr.update(visible=True, value=fig_original),
                        gr.update(visible=True, value=fig_watermarked)]
                else:
                    return [
                        output,
                        gr.update(visible=False),
                        gr.update(visible=False)]

            embedding_btn.click(
                fn=run_embed_watermark,
                inputs=[embedding_aud, embedding_specgram, embedding_type, embedding_msg],
                outputs=[marked_aud, specgram_original, specgram_watermarked]
            )

        with gr.TabItem("Detect Watermark"):
            with gr.Row():
                with gr.Column():
                    detecting_aud = gr.Audio(label="Input Audio", type="filepath")
                    detecting_btn = gr.Button("Detect Watermark")
                with gr.Column():
                    predicted_messages = gr.JSON(label="Detected Messages")

            def run_detect_watermark(file):
                if file is None:
                    raise gr.Error("No file uploaded", duration=5)

                audio_watermarked, rate = load_audio(file)
                result, message, pred_prob, message_prob = detect_watermark(audio_watermarked, rate)

                _, fromat_msg = generate_format_string_by_msg_pt(message[0], generator_nbytes)

                sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)

                # Create message output as JSON
                message_json = {
                    "socre": result,
                    "message": fromat_msg,
                    "frames_count_all": pred_prob.shape[2],
                    "frames_count_above_05": sum_above_05[0].item(),
                    "bits_probability": message_prob[0].tolist(),
                    "bits_massage": message[0].tolist()
                }
                return message_json
            detecting_btn.click(
                fn=run_detect_watermark,
                inputs=[detecting_aud],
                outputs=[predicted_messages]
            )

if __name__ == "__main__":
    demo.launch()