|
import pandas as pd |
|
from datetime import datetime, timedelta |
|
from scripts.utils import DATA_DIR |
|
|
|
|
|
|
|
def calculate_wow_retention_by_type( |
|
df: pd.DataFrame, market_creator: str |
|
) -> pd.DataFrame: |
|
filtered_df = df.loc[df["market_creator"] == market_creator] |
|
|
|
weekly_traders = ( |
|
filtered_df.groupby(["month_year_week", "trader_type"])["trader_address"] |
|
.nunique() |
|
.reset_index() |
|
) |
|
weekly_traders = weekly_traders.sort_values(["trader_type", "month_year_week"]) |
|
|
|
|
|
retention = [] |
|
|
|
for trader_type in weekly_traders["trader_type"].unique(): |
|
type_data = weekly_traders[weekly_traders["trader_type"] == trader_type] |
|
|
|
|
|
for i in range(1, len(type_data)): |
|
current_week = type_data.iloc[i]["month_year_week"] |
|
previous_week = type_data.iloc[i - 1]["month_year_week"] |
|
|
|
|
|
current_traders = set( |
|
filtered_df[ |
|
(filtered_df["month_year_week"] == current_week) |
|
& (filtered_df["trader_type"] == trader_type) |
|
]["trader_address"] |
|
) |
|
|
|
previous_traders = set( |
|
filtered_df[ |
|
(filtered_df["month_year_week"] == previous_week) |
|
& (filtered_df["trader_type"] == trader_type) |
|
]["trader_address"] |
|
) |
|
|
|
retained = len(current_traders.intersection(previous_traders)) |
|
retention_rate = ( |
|
(retained / len(previous_traders)) * 100 |
|
if len(previous_traders) > 0 |
|
else 0 |
|
) |
|
|
|
retention.append( |
|
{ |
|
"trader_type": trader_type, |
|
"week": current_week, |
|
"retained_traders": retained, |
|
"previous_traders": len(previous_traders), |
|
"retention_rate": round(retention_rate, 2), |
|
} |
|
) |
|
|
|
return pd.DataFrame(retention) |
|
|
|
|
|
|
|
def calculate_cohort_retention( |
|
df: pd.DataFrame, market_creator: str, trader_type: str, max_weeks=12 |
|
) -> pd.DataFrame: |
|
df_filtered = df.loc[ |
|
(df["market_creator"] == market_creator) & (df["trader_type"] == trader_type) |
|
] |
|
|
|
first_trades = ( |
|
df_filtered.groupby("trader_address") |
|
.agg({"creation_timestamp": "min", "month_year_week": "first"}) |
|
.reset_index() |
|
) |
|
first_trades.columns = ["trader_address", "first_trade", "cohort_week"] |
|
|
|
|
|
all_weeks = df_filtered["month_year_week"].unique() |
|
weeks_datetime = pd.to_datetime(all_weeks) |
|
sorted_weeks_idx = weeks_datetime.argsort() |
|
all_weeks = all_weeks[sorted_weeks_idx] |
|
|
|
|
|
week_to_number = {week: idx for idx, week in enumerate(all_weeks)} |
|
|
|
|
|
cohort_data = pd.merge( |
|
df_filtered, |
|
first_trades[["trader_address", "cohort_week"]], |
|
on="trader_address", |
|
) |
|
|
|
|
|
cohort_data["cohort_number"] = cohort_data["cohort_week"].map(week_to_number) |
|
cohort_data["activity_number"] = cohort_data["month_year_week"].map(week_to_number) |
|
cohort_data["week_number"] = ( |
|
cohort_data["activity_number"] - cohort_data["cohort_number"] |
|
) |
|
|
|
|
|
cohort_sizes = cohort_data.groupby("cohort_week")["trader_address"].nunique() |
|
retention_matrix = cohort_data.groupby(["cohort_week", "week_number"])[ |
|
"trader_address" |
|
].nunique() |
|
retention_matrix = retention_matrix.unstack(fill_value=0) |
|
|
|
|
|
retention_matrix = retention_matrix.div(cohort_sizes, axis=0) * 100 |
|
|
|
|
|
retention_matrix.index = pd.to_datetime(retention_matrix.index) |
|
retention_matrix = retention_matrix.sort_index() |
|
|
|
|
|
if max_weeks is not None and max_weeks < retention_matrix.shape[1]: |
|
retention_matrix = retention_matrix.iloc[:, :max_weeks] |
|
|
|
return retention_matrix.round(2) |
|
|
|
|
|
def merge_retention_dataset( |
|
traders_df: pd.DataFrame, unknown_df: pd.DataFrame |
|
) -> pd.DataFrame: |
|
|
|
traders_df["trader_type"] = traders_df["staking"].apply( |
|
lambda x: "non_Olas" if x == "non_Olas" else "Olas" |
|
) |
|
unknown_df["trader_type"] = "unclassified" |
|
all_traders = pd.concat([traders_df, unknown_df], ignore_index=True) |
|
|
|
all_traders["creation_timestamp"] = pd.to_datetime( |
|
all_traders["creation_timestamp"] |
|
) |
|
all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True) |
|
all_traders["month_year_week"] = ( |
|
all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y") |
|
) |
|
return all_traders |
|
|
|
|
|
def prepare_retention_dataset( |
|
retention_df: pd.DataFrame, unknown_df: pd.DataFrame |
|
) -> pd.DataFrame: |
|
|
|
retention_df["trader_type"] = retention_df["staking"].apply( |
|
lambda x: "non_Olas" if x == "non_Olas" else "Olas" |
|
) |
|
retention_df.rename(columns={"request_time": "creation_timestamp"}, inplace=True) |
|
retention_df = retention_df[ |
|
["trader_type", "market_creator", "trader_address", "creation_timestamp"] |
|
] |
|
unknown_df["trader_type"] = "unclassified" |
|
unknown_df = unknown_df[ |
|
["trader_type", "market_creator", "trader_address", "creation_timestamp"] |
|
] |
|
all_traders = pd.concat([retention_df, unknown_df], ignore_index=True) |
|
|
|
all_traders["creation_timestamp"] = pd.to_datetime( |
|
all_traders["creation_timestamp"] |
|
) |
|
all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True) |
|
all_traders["month_year_week"] = ( |
|
all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y") |
|
) |
|
return all_traders |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet") |
|
unknown_df = pd.read_parquet(DATA_DIR / "unknown_traders.parquet") |
|
all_traders = prepare_retention_dataset(traders_df, unknown_df) |
|
|
|
wow_retention = calculate_wow_retention_by_type(all_traders) |
|
cohort_retention = calculate_cohort_retention(all_traders) |
|
|