File size: 6,620 Bytes
f26bf5c
 
355fb10
f26bf5c
 
 
dff5e35
 
 
 
8834fdb
f26bf5c
dff5e35
8834fdb
 
f26bf5c
8834fdb
f26bf5c
 
 
8834fdb
 
 
 
 
 
 
 
 
 
 
dff5e35
 
 
8834fdb
 
 
 
dff5e35
 
 
8834fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26bf5c
 
 
 
 
dff5e35
63c3662
dff5e35
63c3662
 
 
f26bf5c
 
dff5e35
f26bf5c
 
 
 
 
 
63c3662
f26bf5c
 
 
 
 
 
 
 
 
63c3662
 
 
f26bf5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8834fdb
 
 
 
f26bf5c
 
 
 
 
 
 
dff5e35
355fb10
 
 
8834fdb
 
 
 
 
 
 
 
 
 
 
 
f26bf5c
8834fdb
 
 
dff5e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8834fdb
355fb10
 
 
 
f26bf5c
8834fdb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import pandas as pd
from datetime import datetime, timedelta
from scripts.utils import DATA_DIR


# Basic Week over Week Retention
def calculate_wow_retention_by_type(
    df: pd.DataFrame, market_creator: str
) -> pd.DataFrame:
    filtered_df = df.loc[df["market_creator"] == market_creator]
    # Get unique traders per week and type
    weekly_traders = (
        filtered_df.groupby(["month_year_week", "trader_type"])["trader_address"]
        .nunique()
        .reset_index()
    )
    weekly_traders = weekly_traders.sort_values(["trader_type", "month_year_week"])

    # Calculate retention
    retention = []
    # Iterate through each trader type
    for trader_type in weekly_traders["trader_type"].unique():
        type_data = weekly_traders[weekly_traders["trader_type"] == trader_type]

        # Calculate retention for each week within this trader type
        for i in range(1, len(type_data)):
            current_week = type_data.iloc[i]["month_year_week"]
            previous_week = type_data.iloc[i - 1]["month_year_week"]

            # Get traders in both weeks for this type
            current_traders = set(
                filtered_df[
                    (filtered_df["month_year_week"] == current_week)
                    & (filtered_df["trader_type"] == trader_type)
                ]["trader_address"]
            )

            previous_traders = set(
                filtered_df[
                    (filtered_df["month_year_week"] == previous_week)
                    & (filtered_df["trader_type"] == trader_type)
                ]["trader_address"]
            )

            retained = len(current_traders.intersection(previous_traders))
            retention_rate = (
                (retained / len(previous_traders)) * 100
                if len(previous_traders) > 0
                else 0
            )

            retention.append(
                {
                    "trader_type": trader_type,
                    "week": current_week,
                    "retained_traders": retained,
                    "previous_traders": len(previous_traders),
                    "retention_rate": round(retention_rate, 2),
                }
            )

    return pd.DataFrame(retention)


# Cohort Retention
def calculate_cohort_retention(
    df: pd.DataFrame, market_creator: str, trader_type: str, max_weeks=12
) -> pd.DataFrame:
    df_filtered = df.loc[
        (df["market_creator"] == market_creator) & (df["trader_type"] == trader_type)
    ]
    # Get first week for each trader
    first_trades = (
        df_filtered.groupby("trader_address")
        .agg({"creation_timestamp": "min", "month_year_week": "first"})
        .reset_index()
    )
    first_trades.columns = ["trader_address", "first_trade", "cohort_week"]

    # Get ordered list of unique weeks - converting to datetime for proper sorting
    all_weeks = df_filtered["month_year_week"].unique()
    weeks_datetime = pd.to_datetime(all_weeks)
    sorted_weeks_idx = weeks_datetime.argsort()
    all_weeks = all_weeks[sorted_weeks_idx]

    # Create mapping from week string to numeric index
    week_to_number = {week: idx for idx, week in enumerate(all_weeks)}

    # Merge back to get all activities
    cohort_data = pd.merge(
        df_filtered,
        first_trades[["trader_address", "cohort_week"]],
        on="trader_address",
    )

    # Calculate week number since first activity
    cohort_data["cohort_number"] = cohort_data["cohort_week"].map(week_to_number)
    cohort_data["activity_number"] = cohort_data["month_year_week"].map(week_to_number)
    cohort_data["week_number"] = (
        cohort_data["activity_number"] - cohort_data["cohort_number"]
    )

    # Calculate retention by cohort
    cohort_sizes = cohort_data.groupby("cohort_week")["trader_address"].nunique()
    retention_matrix = cohort_data.groupby(["cohort_week", "week_number"])[
        "trader_address"
    ].nunique()
    retention_matrix = retention_matrix.unstack(fill_value=0)

    # Convert to percentages
    retention_matrix = retention_matrix.div(cohort_sizes, axis=0) * 100

    # Sort index (cohort_week) chronologically
    retention_matrix.index = pd.to_datetime(retention_matrix.index)
    retention_matrix = retention_matrix.sort_index()

    # Limit to max_weeks if specified
    if max_weeks is not None and max_weeks < retention_matrix.shape[1]:
        retention_matrix = retention_matrix.iloc[:, :max_weeks]

    return retention_matrix.round(2)


def merge_retention_dataset(
    traders_df: pd.DataFrame, unknown_df: pd.DataFrame
) -> pd.DataFrame:

    traders_df["trader_type"] = traders_df["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    unknown_df["trader_type"] = "unclassified"
    all_traders = pd.concat([traders_df, unknown_df], ignore_index=True)

    all_traders["creation_timestamp"] = pd.to_datetime(
        all_traders["creation_timestamp"]
    )
    all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True)
    all_traders["month_year_week"] = (
        all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
    )
    return all_traders


def prepare_retention_dataset(
    retention_df: pd.DataFrame, unknown_df: pd.DataFrame
) -> pd.DataFrame:

    retention_df["trader_type"] = retention_df["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    retention_df.rename(columns={"request_time": "creation_timestamp"}, inplace=True)
    retention_df = retention_df[
        ["trader_type", "market_creator", "trader_address", "creation_timestamp"]
    ]
    unknown_df["trader_type"] = "unclassified"
    unknown_df = unknown_df[
        ["trader_type", "market_creator", "trader_address", "creation_timestamp"]
    ]
    all_traders = pd.concat([retention_df, unknown_df], ignore_index=True)

    all_traders["creation_timestamp"] = pd.to_datetime(
        all_traders["creation_timestamp"]
    )
    all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True)
    all_traders["month_year_week"] = (
        all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
    )
    return all_traders


if __name__ == "__main__":
    # read all datasets
    traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
    unknown_df = pd.read_parquet(DATA_DIR / "unknown_traders.parquet")
    all_traders = prepare_retention_dataset(traders_df, unknown_df)
    # Usage example:
    wow_retention = calculate_wow_retention_by_type(all_traders)
    cohort_retention = calculate_cohort_retention(all_traders)