Spaces:
Configuration error
Configuration error
import sys | |
from torchvision import datasets, transforms | |
from base import BaseDataLoader | |
from data_loader.cifar10 import get_cifar10 | |
from data_loader.cifar100 import get_cifar100 | |
from parse_config import ConfigParser | |
from PIL import Image | |
class CIFAR10DataLoader(BaseDataLoader): | |
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True): | |
config = ConfigParser.get_instance() | |
cfg_trainer = config['trainer'] | |
transform_train = transforms.Compose([ | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
transform_val = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
self.data_dir = data_dir | |
noise_file='%sCIFAR10_%.1f_Asym_%s.json'%(config['data_loader']['args']['data_dir'],cfg_trainer['percent'],cfg_trainer['asym']) | |
self.train_dataset, self.val_dataset = get_cifar10(config['data_loader']['args']['data_dir'], cfg_trainer, train=training, | |
transform_train=transform_train, transform_val=transform_val, noise_file = noise_file) | |
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, | |
val_dataset = self.val_dataset) | |
def run_loader(self, batch_size, shuffle, validation_split, num_workers, pin_memory): | |
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, | |
val_dataset = self.val_dataset) | |
class CIFAR100DataLoader(BaseDataLoader): | |
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True,num_workers=4, pin_memory=True): | |
config = ConfigParser.get_instance() | |
cfg_trainer = config['trainer'] | |
transform_train = transforms.Compose([ | |
#transforms.ColorJitter(brightness= 0.4, contrast= 0.4, saturation= 0.4, hue= 0.1), | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), | |
]) | |
transform_val = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), | |
]) | |
self.data_dir = data_dir | |
config = ConfigParser.get_instance() | |
cfg_trainer = config['trainer'] | |
noise_file='%sCIFAR100_%.1f_Asym_%s.json'%(config['data_loader']['args']['data_dir'],cfg_trainer['percent'],cfg_trainer['asym']) | |
self.train_dataset, self.val_dataset = get_cifar100(config['data_loader']['args']['data_dir'], cfg_trainer, train=training, | |
transform_train=transform_train, transform_val=transform_val, noise_file = noise_file) | |
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, | |
val_dataset = self.val_dataset) | |
def run_loader(self, batch_size, shuffle, validation_split, num_workers, pin_memory): | |
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory, | |
val_dataset = self.val_dataset) | |