Spaces:
Configuration error
Configuration error
File size: 3,737 Bytes
72fc481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import sys
from torchvision import datasets, transforms
from base import BaseDataLoader
from data_loader.cifar10 import get_cifar10
from data_loader.cifar100 import get_cifar100
from parse_config import ConfigParser
from PIL import Image
class CIFAR10DataLoader(BaseDataLoader):
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True, num_workers=4, pin_memory=True):
config = ConfigParser.get_instance()
cfg_trainer = config['trainer']
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
self.data_dir = data_dir
noise_file='%sCIFAR10_%.1f_Asym_%s.json'%(config['data_loader']['args']['data_dir'],cfg_trainer['percent'],cfg_trainer['asym'])
self.train_dataset, self.val_dataset = get_cifar10(config['data_loader']['args']['data_dir'], cfg_trainer, train=training,
transform_train=transform_train, transform_val=transform_val, noise_file = noise_file)
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory,
val_dataset = self.val_dataset)
def run_loader(self, batch_size, shuffle, validation_split, num_workers, pin_memory):
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory,
val_dataset = self.val_dataset)
class CIFAR100DataLoader(BaseDataLoader):
def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_batches=0, training=True,num_workers=4, pin_memory=True):
config = ConfigParser.get_instance()
cfg_trainer = config['trainer']
transform_train = transforms.Compose([
#transforms.ColorJitter(brightness= 0.4, contrast= 0.4, saturation= 0.4, hue= 0.1),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
self.data_dir = data_dir
config = ConfigParser.get_instance()
cfg_trainer = config['trainer']
noise_file='%sCIFAR100_%.1f_Asym_%s.json'%(config['data_loader']['args']['data_dir'],cfg_trainer['percent'],cfg_trainer['asym'])
self.train_dataset, self.val_dataset = get_cifar100(config['data_loader']['args']['data_dir'], cfg_trainer, train=training,
transform_train=transform_train, transform_val=transform_val, noise_file = noise_file)
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory,
val_dataset = self.val_dataset)
def run_loader(self, batch_size, shuffle, validation_split, num_workers, pin_memory):
super().__init__(self.train_dataset, batch_size, shuffle, validation_split, num_workers, pin_memory,
val_dataset = self.val_dataset)
|