assi1 / ELR /README.md
uthurumella's picture
Upload 69 files
72fc481 verified

ELR

This is an official PyTorch implementation of ELR method proposed in Early-Learning Regularization Prevents Memorization of Noisy Labels.

Usage

Train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.8):

python train.py -c config_cifar10.json --percent 0.8

Train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4):

python train.py -c config_cifar10_asym.json --percent 0.4 --asym 1

Train the network on the Asymmmetric Noise CIFAR-100 dataset (noise rate = 0.4):

python train.py -c config_cifar100.json --percent 0.4 --asym 1

The config files can be modified to adjust hyperparameters and optimization settings.

Results

CIFAR10

Method 20% 40% 60% 80% 40% Asym
ELR 91.16% 89.15% 86.12% 73.86% 90.12%
ELR (cosine annealing) 91.12% 91.43% 88.87% 80.69% 90.35%

CIAFAR100

Method 20% 40% 60% 80% 40% Asym
ELR 74.21% 68.28% 59.28% 29.78% 73.71%
ELR (cosine annealing) 74.68% 68.43% 60.05% 30.27% 73.96%

References

  • S. Liu, J. Niles-Weed, N. Razavian and C. Fernandez-Granda "Early-Learning Regularization Prevents Memorization of Noisy Labels", 2020