Spaces:
Running
Running
# AUTOGENERATED! DO NOT EDIT! File to edit: ../course22/vikas/dog-or-cat.ipynb. | |
# %% auto 0 | |
__all__ = ['learner', 'categories', 'example_imgs_path', 'img', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] | |
# %% ../course22/vikas/dog-or-cat.ipynb 2 | |
# Imports | |
from fastai.vision.all import PILImage | |
from fastai.vision.all import load_learner | |
from pathlib import Path | |
import gradio as gr | |
# %% ../course22/vikas/dog-or-cat.ipynb 4 | |
# Function to check if it is a cat | |
def is_cat(x): return x[0].isupper() | |
# %% ../course22/vikas/dog-or-cat.ipynb 6 | |
# Load the trained model | |
learner = load_learner(fname="./dog_or_cat.pkl") | |
# %% ../course22/vikas/dog-or-cat.ipynb 8 | |
categories = ("Cat", "Dog") | |
def classify_image(img): | |
pred, idx, probs = learner.predict(img) | |
print(pred, idx) | |
return dict(zip(categories, map(float, probs))) | |
# %% ../course22/vikas/dog-or-cat.ipynb 10 | |
example_imgs_path = Path("./sample") | |
img = gr.Image() | |
label = gr.Label() | |
examples = [ | |
example_imgs_path/f"dog.jpg", | |
example_imgs_path/f"cat.jpg", | |
example_imgs_path/f"dunno.jpg" | |
] | |
intf = gr.Interface(fn=classify_image, inputs=img, outputs=label, examples=examples) | |
intf.launch(inline=True) | |