# AUTOGENERATED! DO NOT EDIT! File to edit: ../course22/vikas/dog-or-cat.ipynb. # %% auto 0 __all__ = ['learner', 'categories', 'example_imgs_path', 'img', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] # %% ../course22/vikas/dog-or-cat.ipynb 2 # Imports from fastai.vision.all import PILImage from fastai.vision.all import load_learner from pathlib import Path import gradio as gr # %% ../course22/vikas/dog-or-cat.ipynb 4 # Function to check if it is a cat def is_cat(x): return x[0].isupper() # %% ../course22/vikas/dog-or-cat.ipynb 6 # Load the trained model learner = load_learner(fname="./dog_or_cat.pkl") # %% ../course22/vikas/dog-or-cat.ipynb 8 categories = ("Cat", "Dog") def classify_image(img): pred, idx, probs = learner.predict(img) print(pred, idx) return dict(zip(categories, map(float, probs))) # %% ../course22/vikas/dog-or-cat.ipynb 10 example_imgs_path = Path("./sample") img = gr.Image() label = gr.Label() examples = [ example_imgs_path/f"dog.jpg", example_imgs_path/f"cat.jpg", example_imgs_path/f"dunno.jpg" ] intf = gr.Interface(fn=classify_image, inputs=img, outputs=label, examples=examples) intf.launch(inline=True)