File size: 10,069 Bytes
48922fa
a3440c5
48922fa
 
 
 
 
 
 
 
 
 
 
 
 
a3440c5
 
 
 
 
 
48922fa
 
 
 
 
 
 
 
 
 
a3440c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48922fa
 
 
 
 
 
a3440c5
 
 
 
 
48922fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3440c5
48922fa
 
a3440c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48922fa
 
 
 
 
 
 
 
 
 
a3440c5
48922fa
 
 
a3440c5
48922fa
 
a3440c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48922fa
 
 
 
 
a3440c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48922fa
 
a3440c5
 
 
 
 
48922fa
 
 
 
 
a3440c5
 
48922fa
 
 
 
 
 
 
 
 
a3440c5
 
 
 
 
 
 
 
 
 
48922fa
 
 
a3440c5
48922fa
 
 
 
 
 
a3440c5
 
48922fa
 
 
 
 
 
 
 
 
 
 
 
 
 
a3440c5
48922fa
 
a3440c5
48922fa
a3440c5
 
 
 
 
 
 
 
 
 
 
 
 
48922fa
a3440c5
 
48922fa
a3440c5
 
 
 
 
48922fa
 
 
 
 
 
 
 
a3440c5
 
48922fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
Advanced RAG-based search engine with multi-source intelligence.
"""
from typing import List, Dict, Any, Optional
import asyncio
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from duckduckgo_search import DDGS
from googlesearch import search as gsearch
import requests
from bs4 import BeautifulSoup
from tenacity import retry, stop_after_attempt, wait_exponential
import json
import time
from datetime import datetime, timedelta
import hashlib
from urllib.parse import urlparse
import re

class SearchEngine:
    def __init__(self):
        self.embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-mpnet-base-v2"
        )
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50
        )
        self.cache = {}
        self.cache_ttl = timedelta(hours=24)
        self.search_delay = 2  # seconds between searches
        self.last_search_time = datetime.min
    
    def _get_cache_key(self, query: str, **kwargs) -> str:
        """Generate cache key from query and kwargs."""
        cache_data = {
            "query": query,
            **kwargs
        }
        return hashlib.md5(json.dumps(cache_data, sort_keys=True).encode()).hexdigest()
    
    def _get_cached_result(self, cache_key: str) -> Optional[Dict[str, Any]]:
        """Get result from cache if valid."""
        if cache_key in self.cache:
            result, timestamp = self.cache[cache_key]
            if datetime.now() - timestamp < self.cache_ttl:
                return result
            del self.cache[cache_key]
        return None
    
    def _set_cached_result(self, cache_key: str, result: Dict[str, Any]):
        """Store result in cache."""
        self.cache[cache_key] = (result, datetime.now())
    
    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
    async def search_web(self, query: str, max_results: int = 10) -> List[Dict[str, str]]:
        """Perform web search using multiple search engines."""
        results = []
        
        # Respect rate limiting
        time_since_last = datetime.now() - self.last_search_time
        if time_since_last.total_seconds() < self.search_delay:
            await asyncio.sleep(self.search_delay - time_since_last.total_seconds())
        
        # DuckDuckGo Search
        try:
            with DDGS() as ddgs:
                ddg_results = [r for r in ddgs.text(query, max_results=max_results)]
                results.extend(ddg_results)
        except Exception as e:
            print(f"DuckDuckGo search error: {e}")
        
        # Google Search
        try:
            google_results = gsearch(query, num_results=max_results)
            results.extend([{"link": url, "title": url} for url in google_results])
        except Exception as e:
            print(f"Google search error: {e}")
        
        self.last_search_time = datetime.now()
        return results[:max_results]
    
    def _clean_html(self, html: str) -> str:
        """Clean HTML content."""
        # Remove script and style elements
        html = re.sub(r'<script[^>]*>.*?</script>', '', html, flags=re.DOTALL)
        html = re.sub(r'<style[^>]*>.*?</style>', '', html, flags=re.DOTALL)
        
        # Remove comments
        html = re.sub(r'<!--.*?-->', '', html, flags=re.DOTALL)
        
        # Remove remaining tags
        html = re.sub(r'<[^>]+>', ' ', html)
        
        # Clean whitespace
        html = re.sub(r'\s+', ' ', html).strip()
        
        return html
    
    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
    async def fetch_content(self, url: str) -> Optional[str]:
        """Fetch and extract content from a webpage."""
        try:
            headers = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
            }
            response = requests.get(url, headers=headers, timeout=10)
            response.raise_for_status()
            
            # Extract main content
            soup = BeautifulSoup(response.text, "html.parser")
            
            # Remove unwanted elements
            for element in soup(["script", "style", "nav", "footer", "header", "aside"]):
                element.decompose()
            
            # Try to find main content
            main_content = None
            
            # Look for article tag
            if soup.find("article"):
                main_content = soup.find("article")
            
            # Look for main tag
            elif soup.find("main"):
                main_content = soup.find("main")
            
            # Look for div with common content class names
            elif soup.find("div", class_=re.compile(r"content|article|post|entry")):
                main_content = soup.find("div", class_=re.compile(r"content|article|post|entry"))
            
            # Use body if no main content found
            if not main_content:
                main_content = soup.body
            
            # Extract text
            if main_content:
                text = self._clean_html(str(main_content))
            else:
                text = self._clean_html(response.text)
            
            return text
        except Exception as e:
            print(f"Error fetching {url}: {e}")
            return None
    
    def _extract_metadata(self, soup: BeautifulSoup, url: str) -> Dict[str, Any]:
        """Extract metadata from webpage."""
        metadata = {
            "url": url,
            "domain": urlparse(url).netloc,
            "title": None,
            "description": None,
            "published_date": None,
            "author": None,
            "keywords": None
        }
        
        # Extract title
        if soup.title:
            metadata["title"] = soup.title.string
        
        # Extract meta tags
        for meta in soup.find_all("meta"):
            name = meta.get("name", "").lower()
            property = meta.get("property", "").lower()
            content = meta.get("content")
            
            if name == "description" or property == "og:description":
                metadata["description"] = content
            elif name == "author":
                metadata["author"] = content
            elif name == "keywords":
                metadata["keywords"] = content
            elif name in ["published_time", "article:published_time"]:
                metadata["published_date"] = content
        
        return metadata
    
    async def process_search_results(self, query: str) -> Dict[str, Any]:
        """Process search results and create a RAG-based answer."""
        cache_key = self._get_cache_key(query)
        cached_result = self._get_cached_result(cache_key)
        if cached_result:
            return cached_result
        
        # Perform web search
        search_results = await self.search_web(query)
        
        # Fetch content from search results
        documents = []
        metadata_list = []
        
        for result in search_results:
            url = result.get("link")
            if not url:
                continue
                
            content = await self.fetch_content(url)
            if content:
                # Split content into chunks
                chunks = self.text_splitter.split_text(content)
                
                # Store metadata
                metadata = {
                    "source": url,
                    "title": result.get("title", url),
                    **result
                }
                metadata_list.append(metadata)
                
                # Create documents
                for chunk in chunks:
                    doc = Document(
                        page_content=chunk,
                        metadata=metadata
                    )
                    documents.append(doc)
        
        if not documents:
            return {
                "answer": "I couldn't find any relevant information.",
                "sources": [],
                "metadata": []
            }
        
        # Create vector store
        vectorstore = FAISS.from_documents(documents, self.embeddings)
        
        # Create retrieval chain
        chain = RetrievalQAWithSourcesChain.from_chain_type(
            llm=None,  # We'll implement custom answer synthesis
            retriever=vectorstore.as_retriever()
        )
        
        # Get relevant documents
        relevant_docs = chain.retriever.get_relevant_documents(query)
        
        # Extract unique sources and content
        sources = []
        content = []
        used_metadata = []
        
        for doc in relevant_docs[:5]:  # Limit to top 5 most relevant docs
            source = doc.metadata["source"]
            if source not in sources:
                sources.append(source)
                content.append(doc.page_content)
                
                # Find corresponding metadata
                for meta in metadata_list:
                    if meta["source"] == source:
                        used_metadata.append(meta)
                        break
        
        result = {
            "answer": "\n\n".join(content),
            "sources": sources,
            "metadata": used_metadata
        }
        
        # Cache the result
        self._set_cached_result(cache_key, result)
        
        return result
    
    async def search(self, query: str) -> Dict[str, Any]:
        """Main search interface."""
        try:
            return await self.process_search_results(query)
        except Exception as e:
            return {
                "answer": f"An error occurred: {str(e)}",
                "sources": [],
                "metadata": []
            }