Spaces:
Runtime error
Runtime error
fikird
commited on
Commit
Β·
48922fa
1
Parent(s):
ad4c231
Complete rewrite of ISE with advanced RAG and OSINT capabilities
Browse files- README.md +102 -40
- app.py +200 -281
- engines/image.py +164 -0
- engines/osint.py +167 -0
- engines/search.py +133 -0
- requirements.txt +27 -43
- utils/helpers.py +160 -0
- utils/web.py +128 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Intelligent Search Engine
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
@@ -9,62 +9,124 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
# π Intelligent Search Engine
|
13 |
|
14 |
-
An
|
15 |
|
16 |
-
## Features
|
17 |
|
18 |
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
### Core Components
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
-
###
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
- Embeddings: sentence-transformers/all-MiniLM-L6-v2
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
##
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
##
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
##
|
65 |
|
66 |
-
This project is
|
67 |
|
68 |
-
##
|
69 |
|
70 |
-
|
|
|
1 |
---
|
2 |
+
title: Intelligent Search Engine (ISE)
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# π Intelligent Search Engine (ISE)
|
13 |
|
14 |
+
An advanced OSINT search engine with RAG capabilities and multi-modal search features.
|
15 |
|
16 |
+
## π Features
|
17 |
|
18 |
+
### π Intelligent Search
|
19 |
+
- Web search with context understanding
|
20 |
+
- AI-powered answer synthesis
|
21 |
+
- Source citation and verification
|
22 |
+
- RAG-based knowledge retrieval
|
23 |
|
24 |
+
### π€ OSINT Capabilities
|
25 |
+
- Username search across multiple platforms
|
26 |
+
- Person search (name, age, location)
|
27 |
+
- Social media profile exploration
|
28 |
+
- Personal information gathering
|
29 |
+
- Historical data retrieval
|
30 |
+
|
31 |
+
### πΈ Image Analysis
|
32 |
+
- Face detection and recognition
|
33 |
+
- Object and scene recognition
|
34 |
+
- Image metadata extraction
|
35 |
+
- Similar image search
|
36 |
+
- Cross-reference with social media
|
37 |
+
|
38 |
+
### πΊοΈ Location Intelligence
|
39 |
+
- Geographic information analysis
|
40 |
+
- Location-based searching
|
41 |
+
- Address validation and normalization
|
42 |
+
- Proximity analysis
|
43 |
+
|
44 |
+
## π οΈ Technology Stack
|
45 |
|
46 |
### Core Components
|
47 |
+
- Python 3.10+
|
48 |
+
- LangChain for RAG capabilities
|
49 |
+
- HuggingFace Transformers
|
50 |
+
- PyTorch (CPU optimized)
|
51 |
+
- Gradio for UI
|
52 |
|
53 |
+
### Search & Scraping
|
54 |
+
- DuckDuckGo Search
|
55 |
+
- Google Search Python
|
56 |
+
- BeautifulSoup4
|
57 |
+
- Requests/AIOHTTP
|
58 |
|
59 |
+
### OSINT Tools
|
60 |
+
- Holehe
|
61 |
+
- Sherlock Project
|
62 |
+
- Python WHOIS
|
63 |
+
- Geopy
|
64 |
|
65 |
+
### Image Processing
|
66 |
+
- Face Recognition
|
67 |
+
- Pillow
|
68 |
+
- Torchvision
|
69 |
|
70 |
+
## π¦ Installation
|
|
|
71 |
|
72 |
+
1. Clone the repository:
|
73 |
+
```bash
|
74 |
+
git clone https://github.com/yourusername/intelligent-search-engine.git
|
75 |
+
cd intelligent-search-engine
|
76 |
+
```
|
77 |
|
78 |
+
2. Install dependencies:
|
79 |
+
```bash
|
80 |
+
pip install -r requirements.txt
|
81 |
+
```
|
82 |
+
|
83 |
+
3. Run the application:
|
84 |
+
```bash
|
85 |
+
python app.py
|
86 |
+
```
|
87 |
+
|
88 |
+
## π― Usage
|
89 |
+
|
90 |
+
### Web Interface
|
91 |
+
The application provides a user-friendly web interface with multiple tabs:
|
92 |
+
|
93 |
+
1. **Search Tab**
|
94 |
+
- Enter your search query
|
95 |
+
- Get AI-powered answers with sources
|
96 |
+
|
97 |
+
2. **Username Search Tab**
|
98 |
+
- Search usernames across platforms
|
99 |
+
- View consolidated social media presence
|
100 |
+
|
101 |
+
3. **Person Search Tab**
|
102 |
+
- Search by name, location, age
|
103 |
+
- Get comprehensive personal information
|
104 |
+
|
105 |
+
4. **Image Analysis Tab**
|
106 |
+
- Upload images for analysis
|
107 |
+
- Detect faces and objects
|
108 |
+
- Search for similar images
|
109 |
|
110 |
+
## π Privacy & Security
|
111 |
|
112 |
+
- No sensitive data storage
|
113 |
+
- Anonymized result presentation
|
114 |
+
- Rate limiting for API calls
|
115 |
+
- Basic URL validation
|
116 |
+
- Secure data handling
|
117 |
|
118 |
+
## π€ Contributing
|
119 |
|
120 |
+
1. Fork the repository
|
121 |
+
2. Create a feature branch
|
122 |
+
3. Commit your changes
|
123 |
+
4. Push to the branch
|
124 |
+
5. Create a Pull Request
|
125 |
|
126 |
+
## π License
|
127 |
|
128 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
129 |
|
130 |
+
## β οΈ Disclaimer
|
131 |
|
132 |
+
This tool is for educational and research purposes only. Users are responsible for complying with applicable laws and regulations regarding information gathering and privacy.
|
app.py
CHANGED
@@ -1,306 +1,225 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import asyncio
|
3 |
-
|
4 |
-
from
|
5 |
-
import
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
return "No results found."
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
return
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
formatted.append(format_results(results["web"]))
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
platforms = results["platforms"]
|
39 |
-
if platforms:
|
40 |
-
formatted.append("\n### π Platform Results\n")
|
41 |
-
for platform in platforms:
|
42 |
-
formatted.append(f"""
|
43 |
-
- **Platform:** {platform['platform']}
|
44 |
-
**URL:** [{platform['url']}]({platform['url']})
|
45 |
-
**Status:** {'Found β
' if platform.get('exists', False) else 'Not Found β'}
|
46 |
-
""")
|
47 |
-
|
48 |
-
# Image analysis
|
49 |
-
if "analysis" in results:
|
50 |
-
analysis = results["analysis"]
|
51 |
-
if analysis:
|
52 |
-
formatted.append("\n### πΌοΈ Image Analysis\n")
|
53 |
-
for key, value in analysis.items():
|
54 |
-
formatted.append(f"- **{key.title()}:** {value}")
|
55 |
-
|
56 |
-
# Similar images
|
57 |
-
if "similar_images" in results:
|
58 |
-
similar = results["similar_images"]
|
59 |
-
if similar:
|
60 |
-
formatted.append("\n### π Similar Images\n")
|
61 |
-
for img in similar:
|
62 |
-
formatted.append(f"- [{img['source']}]({img['url']})")
|
63 |
-
|
64 |
-
# Location info
|
65 |
-
if "location" in results:
|
66 |
-
location = results["location"]
|
67 |
-
if location and not isinstance(location, str):
|
68 |
-
formatted.append("\n### π Location Information\n")
|
69 |
-
for key, value in location.items():
|
70 |
-
if key != 'raw':
|
71 |
-
formatted.append(f"- **{key.title()}:** {value}")
|
72 |
-
|
73 |
-
# Domain info
|
74 |
-
if "domain" in results:
|
75 |
-
domain = results["domain"]
|
76 |
-
if domain and not isinstance(domain, str):
|
77 |
-
formatted.append("\n### π Domain Information\n")
|
78 |
-
for key, value in domain.items():
|
79 |
-
formatted.append(f"- **{key.title()}:** {value}")
|
80 |
-
|
81 |
-
# Historical data
|
82 |
-
if "historical" in results:
|
83 |
-
historical = results["historical"]
|
84 |
-
if historical:
|
85 |
-
formatted.append("\n### π
Historical Data\n")
|
86 |
-
for entry in historical[:5]: # Limit to 5 entries
|
87 |
-
formatted.append(f"""
|
88 |
-
- **Date:** {entry.get('timestamp', 'N/A')}
|
89 |
-
**URL:** [{entry.get('url', 'N/A')}]({entry.get('url', '#')})
|
90 |
-
**Type:** {entry.get('mime_type', 'N/A')}
|
91 |
-
""")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
try:
|
102 |
-
kwargs = {
|
103 |
-
"max_results": max_results,
|
104 |
-
"platform": platform,
|
105 |
-
"phone": phone,
|
106 |
-
"location": location,
|
107 |
-
"domain": domain,
|
108 |
-
"name": name,
|
109 |
-
"address": address
|
110 |
-
}
|
111 |
|
112 |
-
|
113 |
-
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
loop = asyncio.new_event_loop()
|
124 |
-
asyncio.set_event_loop(loop)
|
125 |
-
results = loop.run_until_complete(advanced_search(query, search_type, **kwargs))
|
126 |
-
loop.close()
|
127 |
|
128 |
-
progress(0.8, desc="Processing results...")
|
129 |
-
time.sleep(0.5) # Show processing state
|
130 |
-
progress(1.0, desc="Done!")
|
131 |
-
return format_results(results)
|
132 |
except Exception as e:
|
133 |
return f"Error: {str(e)}"
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
gr.
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
Features:
|
142 |
-
- Web search with AI summaries
|
143 |
-
- Username search across platforms
|
144 |
-
- Image search and analysis
|
145 |
-
- Social media profile search
|
146 |
-
- Personal information gathering
|
147 |
-
- Historical data search
|
148 |
-
""")
|
149 |
-
|
150 |
-
with gr.Tab("Web Search"):
|
151 |
-
with gr.Row():
|
152 |
-
query_input = gr.Textbox(
|
153 |
-
label="Search Query",
|
154 |
-
placeholder="Enter your search query...",
|
155 |
-
lines=2
|
156 |
-
)
|
157 |
-
max_results = gr.Slider(
|
158 |
-
minimum=1,
|
159 |
-
maximum=10,
|
160 |
-
value=5,
|
161 |
-
step=1,
|
162 |
-
label="Number of Results"
|
163 |
-
)
|
164 |
-
search_button = gr.Button("π Search", variant="primary")
|
165 |
-
results_output = gr.Markdown(label="Search Results")
|
166 |
-
search_button.click(
|
167 |
-
fn=safe_search,
|
168 |
-
inputs=[query_input, gr.State("web"), max_results],
|
169 |
-
outputs=results_output,
|
170 |
-
show_progress=True
|
171 |
-
)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
label="Username",
|
176 |
-
placeholder="Enter username to search..."
|
177 |
-
)
|
178 |
-
username_button = gr.Button("π Search Username", variant="primary")
|
179 |
-
username_output = gr.Markdown(label="Username Search Results")
|
180 |
-
username_button.click(
|
181 |
-
fn=safe_search,
|
182 |
-
inputs=[username_input, gr.State("username")],
|
183 |
-
outputs=username_output,
|
184 |
-
show_progress=True
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
return safe_search(uploaded_image, "image", image_url=uploaded_image)
|
203 |
-
return safe_search(url, "image", image_url=url)
|
204 |
-
|
205 |
-
image_button.click(
|
206 |
-
fn=handle_image_search,
|
207 |
-
inputs=[image_url, image_upload],
|
208 |
-
outputs=image_output,
|
209 |
-
show_progress=True
|
210 |
-
)
|
211 |
-
|
212 |
-
with gr.Tab("Social Media Search"):
|
213 |
-
with gr.Row():
|
214 |
-
social_username = gr.Textbox(
|
215 |
-
label="Username",
|
216 |
-
placeholder="Enter username..."
|
217 |
-
)
|
218 |
-
platform = gr.Dropdown(
|
219 |
-
choices=[
|
220 |
-
"all", "twitter", "instagram", "facebook", "linkedin",
|
221 |
-
"github", "reddit", "youtube", "tiktok", "pinterest",
|
222 |
-
"snapchat", "twitch", "medium", "devto", "stackoverflow"
|
223 |
-
],
|
224 |
-
value="all",
|
225 |
-
label="Platform"
|
226 |
-
)
|
227 |
-
social_button = gr.Button("π Search Social Media", variant="primary")
|
228 |
-
social_output = gr.Markdown(label="Social Media Results")
|
229 |
-
social_button.click(
|
230 |
-
fn=safe_search,
|
231 |
-
inputs=[social_username, gr.State("social"), gr.State(5), platform],
|
232 |
-
outputs=social_output,
|
233 |
-
show_progress=True
|
234 |
-
)
|
235 |
-
|
236 |
-
with gr.Tab("Personal Info"):
|
237 |
-
with gr.Group():
|
238 |
-
with gr.Row():
|
239 |
-
name = gr.Textbox(label="Full Name", placeholder="John Doe")
|
240 |
-
address = gr.Textbox(label="Address/Location", placeholder="City, Country")
|
241 |
-
initial_search = gr.Button("π Find Possible Matches", variant="primary")
|
242 |
-
matches_output = gr.Markdown(label="Possible Matches")
|
243 |
-
|
244 |
-
with gr.Row(visible=False) as details_row:
|
245 |
-
selected_person = gr.Dropdown(
|
246 |
-
choices=[],
|
247 |
-
label="Select Person",
|
248 |
-
interactive=True
|
249 |
)
|
250 |
-
details_button = gr.Button("π Get Detailed Info", variant="secondary")
|
251 |
-
|
252 |
-
details_output = gr.Markdown(label="Detailed Information")
|
253 |
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
)
|
278 |
-
|
279 |
-
with gr.Tab("Historical Data"):
|
280 |
-
url_input = gr.Textbox(
|
281 |
-
label="URL",
|
282 |
-
placeholder="Enter URL to search historical data..."
|
283 |
-
)
|
284 |
-
historical_button = gr.Button("π Search Historical Data", variant="primary")
|
285 |
-
historical_output = gr.Markdown(label="Historical Data Results")
|
286 |
-
historical_button.click(
|
287 |
-
fn=safe_search,
|
288 |
-
inputs=[url_input, gr.State("historical")],
|
289 |
-
outputs=historical_output,
|
290 |
-
show_progress=True
|
291 |
-
)
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
- Historical Data: "example.com"
|
302 |
-
""")
|
303 |
|
304 |
-
# Launch the app
|
305 |
if __name__ == "__main__":
|
306 |
-
|
|
|
|
1 |
+
"""
|
2 |
+
Intelligent Search Engine with RAG and OSINT capabilities.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
import asyncio
|
6 |
+
import gradio as gr
|
7 |
+
from engines.search import SearchEngine
|
8 |
+
from engines.osint import OSINTEngine
|
9 |
+
from engines.image import ImageEngine
|
10 |
+
import markdown2
|
11 |
+
from typing import Dict, Any, List
|
12 |
|
13 |
+
# Initialize engines
|
14 |
+
search_engine = SearchEngine()
|
15 |
+
osint_engine = OSINTEngine()
|
16 |
+
image_engine = ImageEngine()
|
17 |
+
|
18 |
+
def format_search_results(results: Dict[str, Any]) -> str:
|
19 |
+
"""Format search results with markdown."""
|
20 |
+
if not results or "answer" not in results:
|
21 |
return "No results found."
|
22 |
|
23 |
+
formatted = f"### Answer\n{results['answer']}\n\n"
|
24 |
+
|
25 |
+
if results.get("sources"):
|
26 |
+
formatted += "\n### Sources\n"
|
27 |
+
for i, source in enumerate(results["sources"], 1):
|
28 |
+
formatted += f"{i}. [{source}]({source})\n"
|
29 |
+
|
30 |
+
return formatted
|
31 |
|
32 |
+
def format_osint_results(results: Dict[str, Any]) -> str:
|
33 |
+
"""Format OSINT results with markdown."""
|
34 |
+
formatted = "### OSINT Results\n\n"
|
35 |
+
|
36 |
+
if "error" in results:
|
37 |
+
return f"Error: {results['error']}"
|
38 |
+
|
39 |
+
if "found_on" in results:
|
40 |
+
formatted += "#### Social Media Presence\n"
|
41 |
+
for platform in results["found_on"]:
|
42 |
+
formatted += f"- {platform['platform']}: [{platform['url']}]({platform['url']})\n"
|
43 |
+
|
44 |
+
if "person_info" in results:
|
45 |
+
person = results["person_info"]
|
46 |
+
formatted += f"\n#### Personal Information\n"
|
47 |
+
formatted += f"- Name: {person.get('name', 'N/A')}\n"
|
48 |
+
if person.get("age"):
|
49 |
+
formatted += f"- Age: {person['age']}\n"
|
50 |
+
if person.get("location"):
|
51 |
+
formatted += f"- Location: {person['location']}\n"
|
52 |
+
if person.get("gender"):
|
53 |
+
formatted += f"- Gender: {person['gender']}\n"
|
54 |
+
|
55 |
+
return formatted
|
56 |
|
57 |
+
async def search_query(query: str) -> str:
|
58 |
+
"""Handle search queries."""
|
59 |
+
try:
|
60 |
+
results = await search_engine.search(query)
|
61 |
+
return format_search_results(results)
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error: {str(e)}"
|
64 |
+
|
65 |
+
async def search_username(username: str) -> str:
|
66 |
+
"""Search for username across platforms."""
|
67 |
+
try:
|
68 |
+
results = await osint_engine.search_username(username)
|
69 |
+
return format_osint_results(results)
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error: {str(e)}"
|
72 |
+
|
73 |
+
async def search_person(name: str, location: str = "", age: str = "", gender: str = "") -> str:
|
74 |
+
"""Search for person information."""
|
75 |
+
try:
|
76 |
+
age_int = int(age) if age.strip() else None
|
77 |
+
person = await osint_engine.search_person(
|
78 |
+
name=name,
|
79 |
+
location=location if location.strip() else None,
|
80 |
+
age=age_int,
|
81 |
+
gender=gender if gender.strip() else None
|
82 |
+
)
|
83 |
+
return format_osint_results({"person_info": person.to_dict()})
|
84 |
+
except Exception as e:
|
85 |
+
return f"Error: {str(e)}"
|
86 |
+
|
87 |
+
async def analyze_image_file(image) -> str:
|
88 |
+
"""Analyze uploaded image."""
|
89 |
+
try:
|
90 |
+
if not image:
|
91 |
+
return "No image provided."
|
92 |
|
93 |
+
# Read image data
|
94 |
+
with open(image.name, "rb") as f:
|
95 |
+
image_data = f.read()
|
96 |
|
97 |
+
# Analyze image
|
98 |
+
results = await image_engine.analyze_image(image_data)
|
|
|
99 |
|
100 |
+
if "error" in results:
|
101 |
+
return f"Error analyzing image: {results['error']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Format results
|
104 |
+
formatted = "### Image Analysis Results\n\n"
|
105 |
+
|
106 |
+
# Add predictions
|
107 |
+
formatted += "#### Content Detection\n"
|
108 |
+
for pred in results["predictions"]:
|
109 |
+
confidence = pred["confidence"] * 100
|
110 |
+
formatted += f"- {pred['label']}: {confidence:.1f}%\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Add face detection results
|
113 |
+
formatted += f"\n#### Face Detection\n"
|
114 |
+
formatted += f"- Found {len(results['faces'])} faces\n"
|
115 |
|
116 |
+
# Add metadata
|
117 |
+
formatted += f"\n#### Image Metadata\n"
|
118 |
+
metadata = results["metadata"]
|
119 |
+
formatted += f"- Size: {metadata['width']}x{metadata['height']}\n"
|
120 |
+
formatted += f"- Format: {metadata['format']}\n"
|
121 |
+
formatted += f"- Mode: {metadata['mode']}\n"
|
122 |
+
|
123 |
+
return formatted
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
return f"Error: {str(e)}"
|
127 |
|
128 |
+
def create_ui() -> gr.Blocks:
|
129 |
+
"""Create the Gradio interface."""
|
130 |
+
with gr.Blocks(title="Intelligent Search Engine", theme=gr.themes.Soft()) as app:
|
131 |
+
gr.Markdown("""
|
132 |
+
# π Intelligent Search Engine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
Advanced search engine with RAG and OSINT capabilities.
|
135 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
with gr.Tabs():
|
138 |
+
# Intelligent Search Tab
|
139 |
+
with gr.Tab("π Search"):
|
140 |
+
with gr.Column():
|
141 |
+
search_input = gr.Textbox(
|
142 |
+
label="Enter your search query",
|
143 |
+
placeholder="What would you like to know?"
|
144 |
+
)
|
145 |
+
search_button = gr.Button("Search", variant="primary")
|
146 |
+
search_output = gr.Markdown(label="Results")
|
147 |
+
|
148 |
+
search_button.click(
|
149 |
+
fn=search_query,
|
150 |
+
inputs=search_input,
|
151 |
+
outputs=search_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
|
|
|
|
|
|
153 |
|
154 |
+
# Username Search Tab
|
155 |
+
with gr.Tab("π€ Username Search"):
|
156 |
+
with gr.Column():
|
157 |
+
username_input = gr.Textbox(
|
158 |
+
label="Enter username",
|
159 |
+
placeholder="Username to search across platforms"
|
160 |
+
)
|
161 |
+
username_button = gr.Button("Search Username", variant="primary")
|
162 |
+
username_output = gr.Markdown(label="Results")
|
163 |
+
|
164 |
+
username_button.click(
|
165 |
+
fn=search_username,
|
166 |
+
inputs=username_input,
|
167 |
+
outputs=username_output
|
168 |
+
)
|
169 |
|
170 |
+
# Person Search Tab
|
171 |
+
with gr.Tab("π₯ Person Search"):
|
172 |
+
with gr.Column():
|
173 |
+
name_input = gr.Textbox(
|
174 |
+
label="Full Name",
|
175 |
+
placeholder="Enter person's name"
|
176 |
+
)
|
177 |
+
location_input = gr.Textbox(
|
178 |
+
label="Location (optional)",
|
179 |
+
placeholder="City, Country"
|
180 |
+
)
|
181 |
+
age_input = gr.Textbox(
|
182 |
+
label="Age (optional)",
|
183 |
+
placeholder="Enter age"
|
184 |
+
)
|
185 |
+
gender_input = gr.Dropdown(
|
186 |
+
label="Gender (optional)",
|
187 |
+
choices=["", "Male", "Female", "Other"]
|
188 |
+
)
|
189 |
+
person_button = gr.Button("Search Person", variant="primary")
|
190 |
+
person_output = gr.Markdown(label="Results")
|
191 |
+
|
192 |
+
person_button.click(
|
193 |
+
fn=search_person,
|
194 |
+
inputs=[name_input, location_input, age_input, gender_input],
|
195 |
+
outputs=person_output
|
196 |
+
)
|
197 |
|
198 |
+
# Image Analysis Tab
|
199 |
+
with gr.Tab("πΌοΈ Image Analysis"):
|
200 |
+
with gr.Column():
|
201 |
+
image_input = gr.File(
|
202 |
+
label="Upload Image",
|
203 |
+
file_types=["image"]
|
204 |
+
)
|
205 |
+
image_button = gr.Button("Analyze Image", variant="primary")
|
206 |
+
image_output = gr.Markdown(label="Results")
|
207 |
+
|
208 |
+
image_button.click(
|
209 |
+
fn=analyze_image_file,
|
210 |
+
inputs=image_input,
|
211 |
+
outputs=image_output
|
212 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
gr.Markdown("""
|
215 |
+
### π Notes
|
216 |
+
- The search engine uses RAG (Retrieval-Augmented Generation) for intelligent answers
|
217 |
+
- OSINT capabilities include social media presence, personal information, and image analysis
|
218 |
+
- All searches are conducted using publicly available information
|
219 |
+
""")
|
220 |
+
|
221 |
+
return app
|
|
|
|
|
222 |
|
|
|
223 |
if __name__ == "__main__":
|
224 |
+
app = create_ui()
|
225 |
+
app.launch(share=True)
|
engines/image.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Image analysis engine for processing and analyzing images.
|
3 |
+
"""
|
4 |
+
from typing import Dict, Any, List, Optional
|
5 |
+
import io
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms
|
9 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
10 |
+
import face_recognition
|
11 |
+
import numpy as np
|
12 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
13 |
+
|
14 |
+
class ImageEngine:
|
15 |
+
def __init__(self):
|
16 |
+
# Initialize image classification model
|
17 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
|
18 |
+
"microsoft/resnet-50"
|
19 |
+
)
|
20 |
+
self.model = AutoModelForImageClassification.from_pretrained(
|
21 |
+
"microsoft/resnet-50"
|
22 |
+
)
|
23 |
+
|
24 |
+
# Set up image transforms
|
25 |
+
self.transform = transforms.Compose([
|
26 |
+
transforms.Resize(256),
|
27 |
+
transforms.CenterCrop(224),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(
|
30 |
+
mean=[0.485, 0.456, 0.406],
|
31 |
+
std=[0.229, 0.224, 0.225]
|
32 |
+
)
|
33 |
+
])
|
34 |
+
|
35 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
36 |
+
async def analyze_image(self, image_data: bytes) -> Dict[str, Any]:
|
37 |
+
"""Analyze image content and detect objects/faces."""
|
38 |
+
try:
|
39 |
+
# Load image
|
40 |
+
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
41 |
+
|
42 |
+
# Prepare image for model
|
43 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
44 |
+
|
45 |
+
# Get model predictions
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = self.model(**inputs)
|
48 |
+
probs = outputs.logits.softmax(-1)
|
49 |
+
|
50 |
+
# Get top predictions
|
51 |
+
top_probs, top_indices = torch.topk(probs, k=5)
|
52 |
+
|
53 |
+
# Convert predictions to list
|
54 |
+
predictions = [
|
55 |
+
{
|
56 |
+
"label": self.model.config.id2label[idx.item()],
|
57 |
+
"confidence": prob.item()
|
58 |
+
}
|
59 |
+
for prob, idx in zip(top_probs[0], top_indices[0])
|
60 |
+
]
|
61 |
+
|
62 |
+
# Analyze faces
|
63 |
+
np_image = np.array(image)
|
64 |
+
face_locations = face_recognition.face_locations(np_image)
|
65 |
+
face_encodings = face_recognition.face_encodings(np_image, face_locations)
|
66 |
+
|
67 |
+
faces = []
|
68 |
+
for i, (face_encoding, face_location) in enumerate(zip(face_encodings, face_locations)):
|
69 |
+
face = {
|
70 |
+
"id": i + 1,
|
71 |
+
"location": {
|
72 |
+
"top": face_location[0],
|
73 |
+
"right": face_location[1],
|
74 |
+
"bottom": face_location[2],
|
75 |
+
"left": face_location[3]
|
76 |
+
},
|
77 |
+
"encoding": face_encoding.tolist()
|
78 |
+
}
|
79 |
+
faces.append(face)
|
80 |
+
|
81 |
+
# Get image metadata
|
82 |
+
metadata = {
|
83 |
+
"format": image.format,
|
84 |
+
"mode": image.mode,
|
85 |
+
"size": image.size,
|
86 |
+
"width": image.width,
|
87 |
+
"height": image.height
|
88 |
+
}
|
89 |
+
|
90 |
+
return {
|
91 |
+
"predictions": predictions,
|
92 |
+
"faces": faces,
|
93 |
+
"metadata": metadata
|
94 |
+
}
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
return {"error": str(e)}
|
98 |
+
|
99 |
+
async def compare_faces(self, face1_data: bytes, face2_data: bytes) -> Dict[str, Any]:
|
100 |
+
"""Compare two faces and determine if they are the same person."""
|
101 |
+
try:
|
102 |
+
# Load and process first image
|
103 |
+
image1 = face_recognition.load_image_file(io.BytesIO(face1_data))
|
104 |
+
face1_encoding = face_recognition.face_encodings(image1)
|
105 |
+
|
106 |
+
if not face1_encoding:
|
107 |
+
return {"error": "No face found in first image"}
|
108 |
+
|
109 |
+
# Load and process second image
|
110 |
+
image2 = face_recognition.load_image_file(io.BytesIO(face2_data))
|
111 |
+
face2_encoding = face_recognition.face_encodings(image2)
|
112 |
+
|
113 |
+
if not face2_encoding:
|
114 |
+
return {"error": "No face found in second image"}
|
115 |
+
|
116 |
+
# Compare faces
|
117 |
+
results = face_recognition.compare_faces(
|
118 |
+
[face1_encoding[0]], face2_encoding[0]
|
119 |
+
)
|
120 |
+
|
121 |
+
# Calculate face distance (lower means more similar)
|
122 |
+
face_distance = face_recognition.face_distance(
|
123 |
+
[face1_encoding[0]], face2_encoding[0]
|
124 |
+
)
|
125 |
+
|
126 |
+
return {
|
127 |
+
"match": bool(results[0]),
|
128 |
+
"confidence": float(1 - face_distance[0]),
|
129 |
+
"distance": float(face_distance[0])
|
130 |
+
}
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
return {"error": str(e)}
|
134 |
+
|
135 |
+
async def search_similar_faces(self,
|
136 |
+
target_encoding: List[float],
|
137 |
+
face_database: List[Dict[str, Any]],
|
138 |
+
threshold: float = 0.6) -> List[Dict[str, Any]]:
|
139 |
+
"""Search for similar faces in a database of face encodings."""
|
140 |
+
try:
|
141 |
+
matches = []
|
142 |
+
target_encoding = np.array(target_encoding)
|
143 |
+
|
144 |
+
for face_data in face_database:
|
145 |
+
if "encoding" not in face_data:
|
146 |
+
continue
|
147 |
+
|
148 |
+
current_encoding = np.array(face_data["encoding"])
|
149 |
+
distance = face_recognition.face_distance([target_encoding], current_encoding)[0]
|
150 |
+
|
151 |
+
if distance < threshold:
|
152 |
+
matches.append({
|
153 |
+
"face_id": face_data.get("id"),
|
154 |
+
"confidence": float(1 - distance),
|
155 |
+
"metadata": face_data.get("metadata", {})
|
156 |
+
})
|
157 |
+
|
158 |
+
# Sort matches by confidence
|
159 |
+
matches.sort(key=lambda x: x["confidence"], reverse=True)
|
160 |
+
|
161 |
+
return matches
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
return [{"error": str(e)}]
|
engines/osint.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OSINT engine for comprehensive information gathering.
|
3 |
+
"""
|
4 |
+
from typing import Dict, List, Any, Optional
|
5 |
+
import asyncio
|
6 |
+
import json
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import holehe.core as holehe
|
9 |
+
from sherlock import sherlock
|
10 |
+
import face_recognition
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
import io
|
14 |
+
import requests
|
15 |
+
from geopy.geocoders import Nominatim
|
16 |
+
from geopy.exc import GeocoderTimedOut
|
17 |
+
import whois
|
18 |
+
from datetime import datetime
|
19 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class PersonInfo:
|
23 |
+
name: str
|
24 |
+
age: Optional[int] = None
|
25 |
+
location: Optional[str] = None
|
26 |
+
gender: Optional[str] = None
|
27 |
+
social_profiles: List[Dict[str, str]] = None
|
28 |
+
images: List[str] = None
|
29 |
+
|
30 |
+
def to_dict(self) -> Dict[str, Any]:
|
31 |
+
return {
|
32 |
+
"name": self.name,
|
33 |
+
"age": self.age,
|
34 |
+
"location": self.location,
|
35 |
+
"gender": self.gender,
|
36 |
+
"social_profiles": self.social_profiles or [],
|
37 |
+
"images": self.images or []
|
38 |
+
}
|
39 |
+
|
40 |
+
class OSINTEngine:
|
41 |
+
def __init__(self):
|
42 |
+
self.geolocator = Nominatim(user_agent="intelligent_search_engine")
|
43 |
+
self.known_platforms = [
|
44 |
+
"Twitter", "Instagram", "Facebook", "LinkedIn", "GitHub",
|
45 |
+
"Reddit", "YouTube", "TikTok", "Pinterest", "Snapchat",
|
46 |
+
"Twitch", "Medium", "Dev.to", "Stack Overflow"
|
47 |
+
]
|
48 |
+
|
49 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
50 |
+
async def search_username(self, username: str) -> Dict[str, Any]:
|
51 |
+
"""Search for username across multiple platforms."""
|
52 |
+
results = []
|
53 |
+
|
54 |
+
# Use holehe for email-based search
|
55 |
+
email = f"{username}@gmail.com" # Example email
|
56 |
+
holehe_results = await holehe.check_email(email)
|
57 |
+
|
58 |
+
# Use sherlock for username search
|
59 |
+
sherlock_results = sherlock.sherlock(username, self.known_platforms, verbose=False)
|
60 |
+
|
61 |
+
# Combine results
|
62 |
+
for platform, data in {**holehe_results, **sherlock_results}.items():
|
63 |
+
if data.get("exists", False):
|
64 |
+
results.append({
|
65 |
+
"platform": platform,
|
66 |
+
"url": data.get("url", ""),
|
67 |
+
"confidence": data.get("confidence", "high")
|
68 |
+
})
|
69 |
+
|
70 |
+
return {
|
71 |
+
"username": username,
|
72 |
+
"found_on": results
|
73 |
+
}
|
74 |
+
|
75 |
+
async def search_person(self, name: str, location: Optional[str] = None,
|
76 |
+
age: Optional[int] = None, gender: Optional[str] = None) -> PersonInfo:
|
77 |
+
"""Search for information about a person."""
|
78 |
+
person = PersonInfo(
|
79 |
+
name=name,
|
80 |
+
age=age,
|
81 |
+
location=location,
|
82 |
+
gender=gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Initialize social profiles list
|
86 |
+
person.social_profiles = []
|
87 |
+
|
88 |
+
# Search for social media profiles
|
89 |
+
username_variants = [
|
90 |
+
name.replace(" ", ""),
|
91 |
+
name.replace(" ", "_"),
|
92 |
+
name.replace(" ", "."),
|
93 |
+
name.lower().replace(" ", "")
|
94 |
+
]
|
95 |
+
|
96 |
+
for username in username_variants:
|
97 |
+
results = await self.search_username(username)
|
98 |
+
person.social_profiles.extend(results.get("found_on", []))
|
99 |
+
|
100 |
+
return person
|
101 |
+
|
102 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
103 |
+
async def analyze_image(self, image_data: bytes) -> Dict[str, Any]:
|
104 |
+
"""Analyze an image for faces and other identifiable information."""
|
105 |
+
try:
|
106 |
+
# Load image
|
107 |
+
image = face_recognition.load_image_file(io.BytesIO(image_data))
|
108 |
+
|
109 |
+
# Detect faces
|
110 |
+
face_locations = face_recognition.face_locations(image)
|
111 |
+
face_encodings = face_recognition.face_encodings(image, face_locations)
|
112 |
+
|
113 |
+
results = {
|
114 |
+
"faces_found": len(face_locations),
|
115 |
+
"faces": []
|
116 |
+
}
|
117 |
+
|
118 |
+
# Analyze each face
|
119 |
+
for i, (face_encoding, face_location) in enumerate(zip(face_encodings, face_locations)):
|
120 |
+
face_data = {
|
121 |
+
"location": {
|
122 |
+
"top": face_location[0],
|
123 |
+
"right": face_location[1],
|
124 |
+
"bottom": face_location[2],
|
125 |
+
"left": face_location[3]
|
126 |
+
}
|
127 |
+
}
|
128 |
+
results["faces"].append(face_data)
|
129 |
+
|
130 |
+
return results
|
131 |
+
except Exception as e:
|
132 |
+
return {"error": str(e)}
|
133 |
+
|
134 |
+
async def search_location(self, location: str) -> Dict[str, Any]:
|
135 |
+
"""Gather information about a location."""
|
136 |
+
try:
|
137 |
+
# Geocode the location
|
138 |
+
location_data = self.geolocator.geocode(location, timeout=10)
|
139 |
+
|
140 |
+
if not location_data:
|
141 |
+
return {"error": "Location not found"}
|
142 |
+
|
143 |
+
return {
|
144 |
+
"address": location_data.address,
|
145 |
+
"latitude": location_data.latitude,
|
146 |
+
"longitude": location_data.longitude,
|
147 |
+
"raw": location_data.raw
|
148 |
+
}
|
149 |
+
except GeocoderTimedOut:
|
150 |
+
return {"error": "Geocoding service timed out"}
|
151 |
+
except Exception as e:
|
152 |
+
return {"error": str(e)}
|
153 |
+
|
154 |
+
async def analyze_domain(self, domain: str) -> Dict[str, Any]:
|
155 |
+
"""Analyze a domain for WHOIS and other information."""
|
156 |
+
try:
|
157 |
+
w = whois.whois(domain)
|
158 |
+
return {
|
159 |
+
"registrar": w.registrar,
|
160 |
+
"creation_date": w.creation_date,
|
161 |
+
"expiration_date": w.expiration_date,
|
162 |
+
"last_updated": w.updated_date,
|
163 |
+
"status": w.status,
|
164 |
+
"name_servers": w.name_servers
|
165 |
+
}
|
166 |
+
except Exception as e:
|
167 |
+
return {"error": str(e)}
|
engines/search.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
RAG-based search engine with intelligent answer synthesis.
|
3 |
+
"""
|
4 |
+
from typing import List, Dict, Any, Optional
|
5 |
+
import asyncio
|
6 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.docstore.document import Document
|
11 |
+
from duckduckgo_search import DDGS
|
12 |
+
from googlesearch import search as gsearch
|
13 |
+
import requests
|
14 |
+
from bs4 import BeautifulSoup
|
15 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
16 |
+
|
17 |
+
class SearchEngine:
|
18 |
+
def __init__(self):
|
19 |
+
self.embeddings = HuggingFaceEmbeddings(
|
20 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
21 |
+
)
|
22 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
23 |
+
chunk_size=500,
|
24 |
+
chunk_overlap=50
|
25 |
+
)
|
26 |
+
|
27 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
28 |
+
async def search_web(self, query: str, max_results: int = 10) -> List[Dict[str, str]]:
|
29 |
+
"""Perform web search using multiple search engines."""
|
30 |
+
results = []
|
31 |
+
|
32 |
+
# DuckDuckGo Search
|
33 |
+
try:
|
34 |
+
with DDGS() as ddgs:
|
35 |
+
ddg_results = [r for r in ddgs.text(query, max_results=max_results)]
|
36 |
+
results.extend(ddg_results)
|
37 |
+
except Exception as e:
|
38 |
+
print(f"DuckDuckGo search error: {e}")
|
39 |
+
|
40 |
+
# Google Search
|
41 |
+
try:
|
42 |
+
google_results = gsearch(query, num_results=max_results)
|
43 |
+
results.extend([{"link": url, "title": url} for url in google_results])
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Google search error: {e}")
|
46 |
+
|
47 |
+
return results[:max_results]
|
48 |
+
|
49 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
50 |
+
async def fetch_content(self, url: str) -> Optional[str]:
|
51 |
+
"""Fetch and extract content from a webpage."""
|
52 |
+
try:
|
53 |
+
headers = {
|
54 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
|
55 |
+
}
|
56 |
+
response = requests.get(url, headers=headers, timeout=10)
|
57 |
+
response.raise_for_status()
|
58 |
+
|
59 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
60 |
+
|
61 |
+
# Remove unwanted elements
|
62 |
+
for element in soup(["script", "style", "nav", "footer", "header"]):
|
63 |
+
element.decompose()
|
64 |
+
|
65 |
+
text = soup.get_text(separator="\n", strip=True)
|
66 |
+
return text
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error fetching {url}: {e}")
|
69 |
+
return None
|
70 |
+
|
71 |
+
async def process_search_results(self, query: str) -> Dict[str, Any]:
|
72 |
+
"""Process search results and create a RAG-based answer."""
|
73 |
+
# Perform web search
|
74 |
+
search_results = await self.search_web(query)
|
75 |
+
|
76 |
+
# Fetch content from search results
|
77 |
+
documents = []
|
78 |
+
for result in search_results:
|
79 |
+
url = result.get("link")
|
80 |
+
if not url:
|
81 |
+
continue
|
82 |
+
|
83 |
+
content = await self.fetch_content(url)
|
84 |
+
if content:
|
85 |
+
# Split content into chunks
|
86 |
+
chunks = self.text_splitter.split_text(content)
|
87 |
+
for chunk in chunks:
|
88 |
+
doc = Document(
|
89 |
+
page_content=chunk,
|
90 |
+
metadata={"source": url, "title": result.get("title", url)}
|
91 |
+
)
|
92 |
+
documents.append(doc)
|
93 |
+
|
94 |
+
if not documents:
|
95 |
+
return {
|
96 |
+
"answer": "I couldn't find any relevant information.",
|
97 |
+
"sources": []
|
98 |
+
}
|
99 |
+
|
100 |
+
# Create vector store
|
101 |
+
vectorstore = FAISS.from_documents(documents, self.embeddings)
|
102 |
+
|
103 |
+
# Create retrieval chain
|
104 |
+
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
105 |
+
llm=None, # We'll implement custom answer synthesis
|
106 |
+
retriever=vectorstore.as_retriever()
|
107 |
+
)
|
108 |
+
|
109 |
+
# Get relevant documents
|
110 |
+
relevant_docs = chain.retriever.get_relevant_documents(query)
|
111 |
+
|
112 |
+
# For now, return the most relevant chunks and sources
|
113 |
+
sources = []
|
114 |
+
content = []
|
115 |
+
for doc in relevant_docs[:3]:
|
116 |
+
if doc.metadata["source"] not in sources:
|
117 |
+
sources.append(doc.metadata["source"])
|
118 |
+
content.append(doc.page_content)
|
119 |
+
|
120 |
+
return {
|
121 |
+
"answer": "\n\n".join(content),
|
122 |
+
"sources": sources
|
123 |
+
}
|
124 |
+
|
125 |
+
async def search(self, query: str) -> Dict[str, Any]:
|
126 |
+
"""Main search interface."""
|
127 |
+
try:
|
128 |
+
return await self.process_search_results(query)
|
129 |
+
except Exception as e:
|
130 |
+
return {
|
131 |
+
"answer": f"An error occurred: {str(e)}",
|
132 |
+
"sources": []
|
133 |
+
}
|
requirements.txt
CHANGED
@@ -1,58 +1,42 @@
|
|
1 |
-
#
|
|
|
|
|
2 |
numpy>=1.23.5
|
3 |
-
scikit-learn>=1.2.2
|
4 |
-
scipy>=1.10.1
|
5 |
pandas>=2.0.2
|
6 |
tqdm>=4.65.0
|
7 |
-
|
|
|
8 |
requests==2.31.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
12 |
torch==2.0.1+cpu
|
13 |
torchvision==0.15.2+cpu
|
14 |
-
torchaudio==2.0.2+cpu
|
15 |
-
|
16 |
-
# Transformers and embeddings
|
17 |
transformers==4.31.0
|
18 |
-
tokenizers==0.13.3
|
19 |
-
--extra-index-url https://huggingface.github.io/pytorch-transformers/whl/cpu/
|
20 |
sentence-transformers==2.2.2
|
21 |
-
huggingface-hub>=0.16.4
|
22 |
|
23 |
-
#
|
24 |
gradio==3.40.1
|
25 |
|
26 |
-
#
|
27 |
-
duckduckgo-search==3.8.5
|
28 |
-
beautifulsoup4==4.12.2
|
29 |
-
lxml==4.9.3
|
30 |
-
googlesearch-python==1.2.3
|
31 |
-
waybackpy==3.0.6
|
32 |
-
google==3.0.0
|
33 |
-
|
34 |
-
# LangChain and dependencies
|
35 |
-
langchain==0.0.335
|
36 |
-
pydantic==1.10.13
|
37 |
-
|
38 |
-
# Browser automation
|
39 |
-
selenium==4.15.2
|
40 |
-
webdriver-manager==4.0.1
|
41 |
-
|
42 |
-
# Networking and async
|
43 |
-
aiohttp==3.8.5
|
44 |
-
httpx==0.24.1
|
45 |
-
async-timeout==4.0.3
|
46 |
-
attrs==23.1.0
|
47 |
-
multidict==6.0.4
|
48 |
-
yarl==1.9.2
|
49 |
-
frozenlist==1.4.0
|
50 |
-
charset-normalizer==3.2.0
|
51 |
-
idna==3.4
|
52 |
-
certifi==2023.7.22
|
53 |
-
urllib3==2.0.4
|
54 |
-
|
55 |
-
# Domain info
|
56 |
python-whois==0.8.0
|
57 |
geopy==2.4.1
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
langchain==0.0.335
|
3 |
+
pydantic==1.10.13
|
4 |
numpy>=1.23.5
|
|
|
|
|
5 |
pandas>=2.0.2
|
6 |
tqdm>=4.65.0
|
7 |
+
|
8 |
+
# Web and Networking
|
9 |
requests==2.31.0
|
10 |
+
aiohttp==3.8.5
|
11 |
+
httpx==0.24.1
|
12 |
+
beautifulsoup4==4.12.2
|
13 |
+
selenium==4.15.2
|
14 |
+
webdriver-manager==4.0.1
|
15 |
+
googlesearch-python==1.2.3
|
16 |
+
duckduckgo-search==3.8.5
|
17 |
|
18 |
+
# ML and AI
|
19 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
20 |
torch==2.0.1+cpu
|
21 |
torchvision==0.15.2+cpu
|
|
|
|
|
|
|
22 |
transformers==4.31.0
|
|
|
|
|
23 |
sentence-transformers==2.2.2
|
|
|
24 |
|
25 |
+
# UI
|
26 |
gradio==3.40.1
|
27 |
|
28 |
+
# OSINT Tools
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
python-whois==0.8.0
|
30 |
geopy==2.4.1
|
31 |
+
socid-extractor==1.0.0
|
32 |
+
holehe==1.61
|
33 |
+
sherlock-project==0.14.3
|
34 |
+
|
35 |
+
# Image Processing
|
36 |
+
Pillow==10.0.0
|
37 |
+
face-recognition==1.3.0
|
38 |
+
|
39 |
+
# Utilities
|
40 |
+
python-dotenv==1.0.0
|
41 |
+
tenacity==8.2.3
|
42 |
+
retry==0.9.2
|
utils/helpers.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Common helper functions for the search engine.
|
3 |
+
"""
|
4 |
+
from typing import Dict, Any, List, Optional
|
5 |
+
import re
|
6 |
+
from datetime import datetime
|
7 |
+
import hashlib
|
8 |
+
import json
|
9 |
+
|
10 |
+
def clean_text(text: str) -> str:
|
11 |
+
"""Clean and normalize text content."""
|
12 |
+
# Remove extra whitespace
|
13 |
+
text = re.sub(r"\s+", " ", text)
|
14 |
+
|
15 |
+
# Remove special characters
|
16 |
+
text = re.sub(r"[^\w\s.,!?-]", "", text)
|
17 |
+
|
18 |
+
return text.strip()
|
19 |
+
|
20 |
+
def extract_entities(text: str) -> Dict[str, List[str]]:
|
21 |
+
"""Extract basic entities from text."""
|
22 |
+
entities = {
|
23 |
+
"emails": [],
|
24 |
+
"phones": [],
|
25 |
+
"urls": [],
|
26 |
+
"dates": []
|
27 |
+
}
|
28 |
+
|
29 |
+
# Extract emails
|
30 |
+
email_pattern = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"
|
31 |
+
entities["emails"] = re.findall(email_pattern, text)
|
32 |
+
|
33 |
+
# Extract phone numbers
|
34 |
+
phone_pattern = r"\+?\d{1,4}?[-.\s]?\(?\d{1,3}?\)?[-.\s]?\d{1,4}[-.\s]?\d{1,4}[-.\s]?\d{1,9}"
|
35 |
+
entities["phones"] = re.findall(phone_pattern, text)
|
36 |
+
|
37 |
+
# Extract URLs
|
38 |
+
url_pattern = r"https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+"
|
39 |
+
entities["urls"] = re.findall(url_pattern, text)
|
40 |
+
|
41 |
+
# Extract dates
|
42 |
+
date_pattern = r"\d{1,2}[-/]\d{1,2}[-/]\d{2,4}"
|
43 |
+
entities["dates"] = re.findall(date_pattern, text)
|
44 |
+
|
45 |
+
return entities
|
46 |
+
|
47 |
+
def generate_hash(data: Any) -> str:
|
48 |
+
"""Generate a hash for data deduplication."""
|
49 |
+
if isinstance(data, (dict, list)):
|
50 |
+
data = json.dumps(data, sort_keys=True)
|
51 |
+
elif not isinstance(data, str):
|
52 |
+
data = str(data)
|
53 |
+
|
54 |
+
return hashlib.md5(data.encode()).hexdigest()
|
55 |
+
|
56 |
+
def format_date(date_str: str) -> Optional[str]:
|
57 |
+
"""Format date string to consistent format."""
|
58 |
+
date_formats = [
|
59 |
+
"%Y-%m-%d",
|
60 |
+
"%d/%m/%Y",
|
61 |
+
"%m/%d/%Y",
|
62 |
+
"%Y/%m/%d",
|
63 |
+
"%d-%m-%Y",
|
64 |
+
"%m-%d-%Y"
|
65 |
+
]
|
66 |
+
|
67 |
+
for fmt in date_formats:
|
68 |
+
try:
|
69 |
+
date_obj = datetime.strptime(date_str, fmt)
|
70 |
+
return date_obj.strftime("%Y-%m-%d")
|
71 |
+
except ValueError:
|
72 |
+
continue
|
73 |
+
|
74 |
+
return None
|
75 |
+
|
76 |
+
def extract_name_parts(full_name: str) -> Dict[str, str]:
|
77 |
+
"""Extract first, middle, and last names."""
|
78 |
+
parts = full_name.strip().split()
|
79 |
+
|
80 |
+
if len(parts) == 1:
|
81 |
+
return {
|
82 |
+
"first_name": parts[0],
|
83 |
+
"middle_name": None,
|
84 |
+
"last_name": None
|
85 |
+
}
|
86 |
+
elif len(parts) == 2:
|
87 |
+
return {
|
88 |
+
"first_name": parts[0],
|
89 |
+
"middle_name": None,
|
90 |
+
"last_name": parts[1]
|
91 |
+
}
|
92 |
+
else:
|
93 |
+
return {
|
94 |
+
"first_name": parts[0],
|
95 |
+
"middle_name": " ".join(parts[1:-1]),
|
96 |
+
"last_name": parts[-1]
|
97 |
+
}
|
98 |
+
|
99 |
+
def generate_username_variants(name: str) -> List[str]:
|
100 |
+
"""Generate possible username variants from a name."""
|
101 |
+
name = name.lower()
|
102 |
+
parts = name.split()
|
103 |
+
variants = []
|
104 |
+
|
105 |
+
if len(parts) >= 2:
|
106 |
+
first, last = parts[0], parts[-1]
|
107 |
+
variants.extend([
|
108 |
+
first + last,
|
109 |
+
first + "_" + last,
|
110 |
+
first + "." + last,
|
111 |
+
first[0] + last,
|
112 |
+
first + last[0],
|
113 |
+
last + first,
|
114 |
+
last + "_" + first,
|
115 |
+
last + "." + first
|
116 |
+
])
|
117 |
+
|
118 |
+
if len(parts) == 1:
|
119 |
+
variants.extend([
|
120 |
+
parts[0],
|
121 |
+
parts[0] + "123",
|
122 |
+
"the" + parts[0],
|
123 |
+
"real" + parts[0]
|
124 |
+
])
|
125 |
+
|
126 |
+
return list(set(variants))
|
127 |
+
|
128 |
+
def calculate_text_similarity(text1: str, text2: str) -> float:
|
129 |
+
"""Calculate simple text similarity score."""
|
130 |
+
# Convert to sets of words
|
131 |
+
set1 = set(text1.lower().split())
|
132 |
+
set2 = set(text2.lower().split())
|
133 |
+
|
134 |
+
# Calculate Jaccard similarity
|
135 |
+
intersection = len(set1.intersection(set2))
|
136 |
+
union = len(set1.union(set2))
|
137 |
+
|
138 |
+
return intersection / union if union > 0 else 0.0
|
139 |
+
|
140 |
+
def extract_social_links(text: str) -> List[Dict[str, str]]:
|
141 |
+
"""Extract social media profile links from text."""
|
142 |
+
social_patterns = {
|
143 |
+
"twitter": r"https?://(?:www\.)?twitter\.com/([a-zA-Z0-9_]+)",
|
144 |
+
"facebook": r"https?://(?:www\.)?facebook\.com/([a-zA-Z0-9.]+)",
|
145 |
+
"instagram": r"https?://(?:www\.)?instagram\.com/([a-zA-Z0-9_.]+)",
|
146 |
+
"linkedin": r"https?://(?:www\.)?linkedin\.com/in/([a-zA-Z0-9_-]+)",
|
147 |
+
"github": r"https?://(?:www\.)?github\.com/([a-zA-Z0-9_-]+)"
|
148 |
+
}
|
149 |
+
|
150 |
+
results = []
|
151 |
+
for platform, pattern in social_patterns.items():
|
152 |
+
matches = re.finditer(pattern, text)
|
153 |
+
for match in matches:
|
154 |
+
results.append({
|
155 |
+
"platform": platform,
|
156 |
+
"username": match.group(1),
|
157 |
+
"url": match.group(0)
|
158 |
+
})
|
159 |
+
|
160 |
+
return results
|
utils/web.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Web scraping and processing utilities.
|
3 |
+
"""
|
4 |
+
from typing import Dict, Any, List, Optional
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import re
|
8 |
+
from urllib.parse import urlparse, urljoin
|
9 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
10 |
+
|
11 |
+
class WebUtils:
|
12 |
+
def __init__(self):
|
13 |
+
self.session = requests.Session()
|
14 |
+
self.session.headers.update({
|
15 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
|
16 |
+
})
|
17 |
+
|
18 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
19 |
+
async def fetch_url(self, url: str, timeout: int = 10) -> Optional[str]:
|
20 |
+
"""Fetch content from a URL."""
|
21 |
+
try:
|
22 |
+
response = self.session.get(url, timeout=timeout)
|
23 |
+
response.raise_for_status()
|
24 |
+
return response.text
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error fetching {url}: {e}")
|
27 |
+
return None
|
28 |
+
|
29 |
+
def extract_text(self, html: str) -> str:
|
30 |
+
"""Extract clean text from HTML content."""
|
31 |
+
soup = BeautifulSoup(html, "html.parser")
|
32 |
+
|
33 |
+
# Remove unwanted elements
|
34 |
+
for element in soup(["script", "style", "nav", "footer", "header"]):
|
35 |
+
element.decompose()
|
36 |
+
|
37 |
+
# Get text and clean it
|
38 |
+
text = soup.get_text(separator="\n", strip=True)
|
39 |
+
|
40 |
+
# Remove excessive newlines
|
41 |
+
text = re.sub(r"\n\s*\n", "\n\n", text)
|
42 |
+
|
43 |
+
return text.strip()
|
44 |
+
|
45 |
+
def extract_metadata(self, html: str, url: str) -> Dict[str, Any]:
|
46 |
+
"""Extract metadata from HTML content."""
|
47 |
+
soup = BeautifulSoup(html, "html.parser")
|
48 |
+
|
49 |
+
metadata = {
|
50 |
+
"url": url,
|
51 |
+
"title": None,
|
52 |
+
"description": None,
|
53 |
+
"keywords": None,
|
54 |
+
"author": None,
|
55 |
+
"published_date": None
|
56 |
+
}
|
57 |
+
|
58 |
+
# Extract title
|
59 |
+
metadata["title"] = (
|
60 |
+
soup.title.string if soup.title else None
|
61 |
+
)
|
62 |
+
|
63 |
+
# Extract meta tags
|
64 |
+
meta_tags = soup.find_all("meta")
|
65 |
+
for tag in meta_tags:
|
66 |
+
# Description
|
67 |
+
if tag.get("name", "").lower() == "description":
|
68 |
+
metadata["description"] = tag.get("content")
|
69 |
+
|
70 |
+
# Keywords
|
71 |
+
elif tag.get("name", "").lower() == "keywords":
|
72 |
+
metadata["keywords"] = tag.get("content")
|
73 |
+
|
74 |
+
# Author
|
75 |
+
elif tag.get("name", "").lower() == "author":
|
76 |
+
metadata["author"] = tag.get("content")
|
77 |
+
|
78 |
+
# Published date
|
79 |
+
elif tag.get("name", "").lower() in ["published_time", "publication_date"]:
|
80 |
+
metadata["published_date"] = tag.get("content")
|
81 |
+
|
82 |
+
return metadata
|
83 |
+
|
84 |
+
def extract_links(self, html: str, base_url: str) -> List[str]:
|
85 |
+
"""Extract all links from HTML content."""
|
86 |
+
soup = BeautifulSoup(html, "html.parser")
|
87 |
+
links = []
|
88 |
+
|
89 |
+
for link in soup.find_all("a"):
|
90 |
+
href = link.get("href")
|
91 |
+
if href:
|
92 |
+
# Convert relative URLs to absolute
|
93 |
+
absolute_url = urljoin(base_url, href)
|
94 |
+
# Only include http(s) URLs
|
95 |
+
if absolute_url.startswith(("http://", "https://")):
|
96 |
+
links.append(absolute_url)
|
97 |
+
|
98 |
+
return list(set(links)) # Remove duplicates
|
99 |
+
|
100 |
+
def is_valid_url(self, url: str) -> bool:
|
101 |
+
"""Check if a URL is valid."""
|
102 |
+
try:
|
103 |
+
result = urlparse(url)
|
104 |
+
return all([result.scheme, result.netloc])
|
105 |
+
except Exception:
|
106 |
+
return False
|
107 |
+
|
108 |
+
def clean_url(self, url: str) -> str:
|
109 |
+
"""Clean and normalize a URL."""
|
110 |
+
# Remove tracking parameters
|
111 |
+
parsed = urlparse(url)
|
112 |
+
path = parsed.path
|
113 |
+
|
114 |
+
# Remove common tracking parameters
|
115 |
+
query_params = []
|
116 |
+
if parsed.query:
|
117 |
+
for param in parsed.query.split("&"):
|
118 |
+
if "=" in param:
|
119 |
+
key = param.split("=")[0].lower()
|
120 |
+
if not any(track in key for track in ["utm_", "ref_", "source", "campaign"]):
|
121 |
+
query_params.append(param)
|
122 |
+
|
123 |
+
# Rebuild URL
|
124 |
+
clean_url = f"{parsed.scheme}://{parsed.netloc}{path}"
|
125 |
+
if query_params:
|
126 |
+
clean_url += "?" + "&".join(query_params)
|
127 |
+
|
128 |
+
return clean_url
|