File size: 5,881 Bytes
0709139 4622b44 d885a52 4622b44 737ec25 0709139 737ec25 0709139 fa25b8d 0709139 86d63a2 383aa7e 0709139 244c35c 383aa7e 0709139 383aa7e 0709139 383aa7e fa25b8d 169c06a 0709139 8334105 0709139 e8b709f 8334105 f9de43f 0709139 f9de43f af1f46a f9de43f 0709139 4622b44 f9de43f 4622b44 f9de43f 4895b5f 4622b44 c68f3a4 4622b44 f9de43f 4895b5f 4622b44 0709139 04dd650 f9de43f 04dd650 0709139 1e12937 f9de43f 0709139 f9de43f 0709139 f9de43f 0709139 4895b5f 0709139 d144786 0709139 4622b44 0709139 1e12937 9acd233 0709139 cf957bf 0709139 e6a4a0d 0709139 e6a4a0d 0709139 e6a4a0d cf957bf 0709139 f9de43f 0709139 f9de43f 0709139 f9de43f 0709139 1e12937 0709139 4622b44 f9de43f 4622b44 0709139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
# Set up caching for Hugging Face models
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU usage
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from torchvision.transforms.functional import InterpolationMode
import torchvision.transforms as T
from transformers import AutoModel, AutoTokenizer
import gc
# Import prompts from prompts.py
from prompts import front as front_prompt, back as back_prompt
# ---------------------------
# HUGGING FACE MODEL SETUP (CPU)
# ---------------------------
path = "OpenGVLab/InternVL2_5-2B"
cache_folder = "./.cache"
# Load the Vision AI model and tokenizer globally.
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.float32,
trust_remote_code=True
).eval().to("cpu")
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
# ---------------------------
# YOLO MODEL INITIALIZATION
# ---------------------------
model_path = "best.pt"
modelY = YOLO(model_path)
modelY.to('cpu') # Explicitly move model to CPU
def preprocessing(image):
"""Apply enhancement filters and resize."""
image = Image.fromarray(np.array(image))
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
width = 448
aspect_ratio = image.height / image.width
height = int(width * aspect_ratio)
image = image.resize((width, height))
return image
def imageRotation(image):
"""Rotate image if height exceeds width."""
if image.height > image.width:
return image.rotate(90, expand=True)
return image
def detect_document(image):
"""Detect front/back of the document using YOLO."""
image_np = np.array(image)
results = modelY(image_np, conf=0.85, device='cpu')
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image_np, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image_np), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crop detected bounding boxes from the image."""
cropped_images = {}
image_np = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image_np[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
# ---------------------------
# VISION AI API FUNCTIONS
# ---------------------------
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
return transform
def load_image(image_file):
transform = build_transform(input_size=448)
pixel_values = transform(image_file).unsqueeze(0) # Add batch dimension
return pixel_values
def vision_ai_api(image, doc_type):
"""Run the model using a dynamic prompt based on detected doc type."""
pixel_values = load_image(image).to(torch.float32).to("cpu")
generation_config = dict(max_new_tokens=512, do_sample=True)
question = front_prompt if doc_type == "front" else back_prompt if doc_type == "back" else "Please provide document details."
print("Before requesting model...")
response = model.chat(tokenizer, pixel_values, question, generation_config)
print("After requesting model...", response)
# Clear memory
del pixel_values
gc.collect() # Force garbage collection
torch.cuda.empty_cache()
return f'Assistant: {response}'
# ---------------------------
# PREDICTION PIPELINE
# ---------------------------
def predict(image):
"""Pipeline: Preprocess → Detect → Crop → Vision AI API call."""
processed_image = preprocessing(image)
rotated_image = imageRotation(processed_image)
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {"front": front_result, "back": back_result}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
# ---------------------------
# GRADIO INTERFACE LAUNCH
# ---------------------------
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch() |