Create app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image, ImageEnhance
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
|
9 |
+
model_path = "best.pt"
|
10 |
+
model = YOLO(model_path)
|
11 |
+
|
12 |
+
def preprocessing(image):
|
13 |
+
|
14 |
+
image = Image.fromarray(np.array(image))
|
15 |
+
|
16 |
+
image = ImageEnhance.Sharpness(image).enhance(2.0)
|
17 |
+
image = ImageEnhance.Contrast(image).enhance(1.5)
|
18 |
+
image = ImageEnhance.Brightness(image).enhance(0.8)
|
19 |
+
|
20 |
+
|
21 |
+
width = 800
|
22 |
+
aspect_ratio = image.height / image.width
|
23 |
+
height = int(width * aspect_ratio)
|
24 |
+
image = image.resize((width, height))
|
25 |
+
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def imageRotation(image):
|
30 |
+
"""Dummy function for image rotation."""
|
31 |
+
return image
|
32 |
+
|
33 |
+
|
34 |
+
def detect_document(image):
|
35 |
+
"""Detects front and back of the document using YOLO."""
|
36 |
+
image = np.array(image)
|
37 |
+
results = model(image, conf=0.85)
|
38 |
+
|
39 |
+
detected_classes = set()
|
40 |
+
labels = []
|
41 |
+
bounding_boxes = []
|
42 |
+
|
43 |
+
for result in results:
|
44 |
+
for box in result.boxes:
|
45 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
46 |
+
conf = box.conf[0]
|
47 |
+
cls = int(box.cls[0])
|
48 |
+
class_name = model.names[cls]
|
49 |
+
|
50 |
+
detected_classes.add(class_name)
|
51 |
+
label = f"{class_name} {conf:.2f}"
|
52 |
+
labels.append(label)
|
53 |
+
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
|
54 |
+
|
55 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
56 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
57 |
+
|
58 |
+
possible_classes = {"front", "back"}
|
59 |
+
missing_classes = possible_classes - detected_classes
|
60 |
+
if missing_classes:
|
61 |
+
labels.append(f"Missing: {', '.join(missing_classes)}")
|
62 |
+
|
63 |
+
return Image.fromarray(image), labels, bounding_boxes
|
64 |
+
|
65 |
+
|
66 |
+
def crop_image(image, bounding_boxes):
|
67 |
+
"""Crops detected bounding boxes from the image."""
|
68 |
+
cropped_images = {}
|
69 |
+
image = np.array(image)
|
70 |
+
|
71 |
+
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
|
72 |
+
cropped = image[y1:y2, x1:x2]
|
73 |
+
cropped_images[class_name] = Image.fromarray(cropped)
|
74 |
+
|
75 |
+
return cropped_images
|
76 |
+
|
77 |
+
|
78 |
+
def vision_ai_api(image, doc_type):
|
79 |
+
"""Dummy API call for Vision AI, returns a fake JSON response."""
|
80 |
+
return {
|
81 |
+
"document_type": doc_type,
|
82 |
+
"extracted_text": "Dummy OCR result for " + doc_type,
|
83 |
+
"confidence": 0.99
|
84 |
+
}
|
85 |
+
|
86 |
+
# ---------------- Prediction Function ---------------- #
|
87 |
+
def predict(image):
|
88 |
+
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
|
89 |
+
processed_image = preprocessing(image)
|
90 |
+
rotated_image = imageRotation(processed_image)
|
91 |
+
detected_image, labels, bounding_boxes = detect_document(rotated_image)
|
92 |
+
|
93 |
+
cropped_images = crop_image(rotated_image, bounding_boxes)
|
94 |
+
|
95 |
+
# Call Vision AI separately for front and back if detected
|
96 |
+
front_result, back_result = None, None
|
97 |
+
if "front" in cropped_images:
|
98 |
+
front_result = vision_ai_api(cropped_images["front"], "front")
|
99 |
+
if "back" in cropped_images:
|
100 |
+
back_result = vision_ai_api(cropped_images["back"], "back")
|
101 |
+
|
102 |
+
|
103 |
+
api_results = {
|
104 |
+
"front": front_result,
|
105 |
+
"back": back_result
|
106 |
+
}
|
107 |
+
|
108 |
+
return detected_image, labels, api_results
|
109 |
+
|
110 |
+
|
111 |
+
iface = gr.Interface(
|
112 |
+
fn=predict,
|
113 |
+
inputs="image",
|
114 |
+
outputs=["image", "text", "json"],
|
115 |
+
title="License Field Detection (Front & Back Card)"
|
116 |
+
)
|
117 |
+
|
118 |
+
iface.launch()
|