journal / app.py
srbmihaicode's picture
test
40d04ab
raw
history blame
1.44 kB
# import objects from the Flask model
from flask import Flask, jsonify, render_template, request, make_response
import transformers
# creating flask app
app = Flask(__name__)
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")} # feel free to add several models
listOfKeys = []
for key in dictOfModels :
listOfKeys.append(key)
# inference fonction
def get_prediction(message,model):
# inference
results = model(message)
return results
# get method
@app.route('/', methods=['GET'])
def get():
# in the select we will have each key of the list in option
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
# post method
@app.route('/', methods=['POST'])
def predict():
message = request.form['message']
# choice of the model
results = get_prediction(message, dictOfModels[request.form.get("model_choice")])
print(f'User selected model : {request.form.get("model_choice")}')
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
return render_template('result.html', text = f'{message}', prediction = my_prediction)
if __name__ == '__main__':
# starting app
app.run(debug=True,host='0.0.0.0')