Spaces:
Paused
Paused
File size: 1,441 Bytes
40d04ab 980db68 40d04ab a83fb54 40d04ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# import objects from the Flask model
from flask import Flask, jsonify, render_template, request, make_response
import transformers
# creating flask app
app = Flask(__name__)
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")} # feel free to add several models
listOfKeys = []
for key in dictOfModels :
listOfKeys.append(key)
# inference fonction
def get_prediction(message,model):
# inference
results = model(message)
return results
# get method
@app.route('/', methods=['GET'])
def get():
# in the select we will have each key of the list in option
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
# post method
@app.route('/', methods=['POST'])
def predict():
message = request.form['message']
# choice of the model
results = get_prediction(message, dictOfModels[request.form.get("model_choice")])
print(f'User selected model : {request.form.get("model_choice")}')
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
return render_template('result.html', text = f'{message}', prediction = my_prediction)
if __name__ == '__main__':
# starting app
app.run(debug=True,host='0.0.0.0')
|