srbmihaicode commited on
Commit
a83fb54
·
verified ·
1 Parent(s): 98a409b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -35
app.py CHANGED
@@ -1,20 +1,12 @@
1
- import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -24,9 +16,9 @@ def respond(
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +27,32 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ from flask import Flask, request, jsonify
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Initialize Flask app and Hugging Face client
5
+ app = Flask(__name__)
 
6
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
+ # Helper function to generate a response from the AI model
9
+ def generate_response(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
10
  messages = [{"role": "system", "content": system_message}]
11
 
12
  for val in history:
 
16
  messages.append({"role": "assistant", "content": val[1]})
17
 
18
  messages.append({"role": "user", "content": message})
 
19
  response = ""
20
 
21
+ # Streaming response from the Hugging Face model
22
  for message in client.chat_completion(
23
  messages,
24
  max_tokens=max_tokens,
 
27
  top_p=top_p,
28
  ):
29
  token = message.choices[0].delta.content
 
30
  response += token
 
31
 
32
+ return response
33
+
34
+ # API endpoint to handle requests
35
+ @app.route("/chat", methods=["POST"])
36
+ def chat():
37
+ try:
38
+ data = request.json
39
+ message = data.get("message", "")
40
+ history = data.get("history", [])
41
+ system_message = data.get("system_message", "You are a friendly chatbot.")
42
+ max_tokens = data.get("max_tokens", 512)
43
+ temperature = data.get("temperature", 0.7)
44
+ top_p = data.get("top_p", 0.95)
45
+
46
+ # Validate inputs
47
+ if not isinstance(history, list) or not all(isinstance(pair, list) for pair in history):
48
+ return jsonify({"error": "Invalid history format. It should be a list of [message, response] pairs."}), 400
49
 
50
+ # Generate AI response
51
+ response = generate_response(message, history, system_message, max_tokens, temperature, top_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ return jsonify({"response": response})
54
+ except Exception as e:
55
+ return jsonify({"error": str(e)}), 500
56
 
57
  if __name__ == "__main__":
58
+ app.run(host="0.0.0.0", port=8000)