classifieur / utils.py
simondh's picture
isolate prompts
442b8d8
raw
history blame
4.66 kB
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.feature_extraction.text import TfidfVectorizer
import tempfile
from prompts import VALIDATION_PROMPT
def load_data(file_path):
"""
Load data from an Excel or CSV file
Args:
file_path (str): Path to the file
Returns:
pd.DataFrame: Loaded data
"""
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == ".xlsx" or file_ext == ".xls":
return pd.read_excel(file_path)
elif file_ext == ".csv":
return pd.read_csv(file_path)
else:
raise ValueError(
f"Unsupported file format: {file_ext}. Please upload an Excel or CSV file."
)
def export_data(df, file_name, format_type="excel"):
"""
Export dataframe to file
Args:
df (pd.DataFrame): Dataframe to export
file_name (str): Name of the output file
format_type (str): "excel" or "csv"
Returns:
str: Path to the exported file
"""
# Create export directory if it doesn't exist
export_dir = "exports"
os.makedirs(export_dir, exist_ok=True)
# Full path for the export file
export_path = os.path.join(export_dir, file_name)
# Export based on format type
if format_type == "excel":
df.to_excel(export_path, index=False)
else:
df.to_csv(export_path, index=False)
return export_path
def visualize_results(df, text_column, category_column="Category"):
"""
Create visualization of classification results
Args:
df (pd.DataFrame): Dataframe with classification results
text_column (str): Name of the column containing text data
category_column (str): Name of the column containing categories
Returns:
matplotlib.figure.Figure: Visualization figure
"""
# Check if category column exists
if category_column not in df.columns:
# Create a simple figure with a message
fig, ax = plt.subplots(figsize=(10, 6))
ax.text(
0.5, 0.5, "No categories to display", ha="center", va="center", fontsize=12
)
ax.set_title("No Classification Results Available")
plt.tight_layout()
return fig
# Get categories and their counts
category_counts = df[category_column].value_counts()
# Create a new figure
fig, ax = plt.subplots(figsize=(10, 6))
# Create the histogram
bars = ax.bar(category_counts.index, category_counts.values)
# Add value labels on top of each bar
for bar in bars:
height = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2.0,
height,
f"{int(height)}",
ha="center",
va="bottom",
)
# Customize the plot
ax.set_xlabel("Categories")
ax.set_ylabel("Number of Texts")
ax.set_title("Distribution of Classified Texts")
# Rotate x-axis labels if they're too long
plt.xticks(rotation=45, ha="right")
# Add grid
ax.grid(True, linestyle="--", alpha=0.7)
plt.tight_layout()
return fig
def validate_results(df, text_columns, client):
"""
Use LLM to validate the classification results
Args:
df (pd.DataFrame): Dataframe with classification results
text_columns (list): List of column names containing text data
client: LiteLLM client
Returns:
str: Validation report
"""
try:
# Sample a few rows for validation
sample_size = min(5, len(df))
sample_df = df.sample(n=sample_size, random_state=42)
# Build validation prompts
validation_prompts = []
for _, row in sample_df.iterrows():
# Combine text from all selected columns
text = " ".join(str(row[col]) for col in text_columns)
assigned_category = row["Category"]
confidence = row["Confidence"]
validation_prompts.append(
f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n"
)
# Use the prompt from prompts.py
prompt = VALIDATION_PROMPT.format("\n---\n".join(validation_prompts))
# Call LLM API
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=400,
)
validation_report = response.choices[0].message.content.strip()
return validation_report
except Exception as e:
return f"Validation failed: {str(e)}"