import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.feature_extraction.text import TfidfVectorizer import tempfile from prompts import VALIDATION_PROMPT def load_data(file_path): """ Load data from an Excel or CSV file Args: file_path (str): Path to the file Returns: pd.DataFrame: Loaded data """ file_ext = os.path.splitext(file_path)[1].lower() if file_ext == ".xlsx" or file_ext == ".xls": return pd.read_excel(file_path) elif file_ext == ".csv": return pd.read_csv(file_path) else: raise ValueError( f"Unsupported file format: {file_ext}. Please upload an Excel or CSV file." ) def export_data(df, file_name, format_type="excel"): """ Export dataframe to file Args: df (pd.DataFrame): Dataframe to export file_name (str): Name of the output file format_type (str): "excel" or "csv" Returns: str: Path to the exported file """ # Create export directory if it doesn't exist export_dir = "exports" os.makedirs(export_dir, exist_ok=True) # Full path for the export file export_path = os.path.join(export_dir, file_name) # Export based on format type if format_type == "excel": df.to_excel(export_path, index=False) else: df.to_csv(export_path, index=False) return export_path def visualize_results(df, text_column, category_column="Category"): """ Create visualization of classification results Args: df (pd.DataFrame): Dataframe with classification results text_column (str): Name of the column containing text data category_column (str): Name of the column containing categories Returns: matplotlib.figure.Figure: Visualization figure """ # Check if category column exists if category_column not in df.columns: # Create a simple figure with a message fig, ax = plt.subplots(figsize=(10, 6)) ax.text( 0.5, 0.5, "No categories to display", ha="center", va="center", fontsize=12 ) ax.set_title("No Classification Results Available") plt.tight_layout() return fig # Get categories and their counts category_counts = df[category_column].value_counts() # Create a new figure fig, ax = plt.subplots(figsize=(10, 6)) # Create the histogram bars = ax.bar(category_counts.index, category_counts.values) # Add value labels on top of each bar for bar in bars: height = bar.get_height() ax.text( bar.get_x() + bar.get_width() / 2.0, height, f"{int(height)}", ha="center", va="bottom", ) # Customize the plot ax.set_xlabel("Categories") ax.set_ylabel("Number of Texts") ax.set_title("Distribution of Classified Texts") # Rotate x-axis labels if they're too long plt.xticks(rotation=45, ha="right") # Add grid ax.grid(True, linestyle="--", alpha=0.7) plt.tight_layout() return fig def validate_results(df, text_columns, client): """ Use LLM to validate the classification results Args: df (pd.DataFrame): Dataframe with classification results text_columns (list): List of column names containing text data client: LiteLLM client Returns: str: Validation report """ try: # Sample a few rows for validation sample_size = min(5, len(df)) sample_df = df.sample(n=sample_size, random_state=42) # Build validation prompts validation_prompts = [] for _, row in sample_df.iterrows(): # Combine text from all selected columns text = " ".join(str(row[col]) for col in text_columns) assigned_category = row["Category"] confidence = row["Confidence"] validation_prompts.append( f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n" ) # Use the prompt from prompts.py prompt = VALIDATION_PROMPT.format("\n---\n".join(validation_prompts)) # Call LLM API response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], temperature=0.3, max_tokens=400, ) validation_report = response.choices[0].message.content.strip() return validation_report except Exception as e: return f"Validation failed: {str(e)}"