classifieur / classifiers.py
simondh's picture
black .
6f39808
raw
history blame
9.94 kB
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
import random
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
class BaseClassifier:
"""Base class for text classifiers"""
def __init__(self):
pass
def classify(self, texts, categories=None):
"""
Classify a list of texts into categories
Args:
texts (list): List of text strings to classify
categories (list, optional): List of category names. If None, categories will be auto-detected
Returns:
list: List of classification results with categories, confidence scores, and explanations
"""
raise NotImplementedError("Subclasses must implement this method")
def _generate_default_categories(self, texts, num_clusters=5):
"""
Generate default categories based on text clustering
Args:
texts (list): List of text strings
num_clusters (int): Number of clusters to generate
Returns:
list: List of category names
"""
# Simple implementation - in real system this would be more sophisticated
default_categories = [f"Category {i+1}" for i in range(num_clusters)]
return default_categories
class TFIDFClassifier(BaseClassifier):
"""Classifier using TF-IDF and clustering for fast classification"""
def __init__(self):
super().__init__()
self.vectorizer = TfidfVectorizer(
max_features=1000, stop_words="english", ngram_range=(1, 2)
)
self.model = None
self.feature_names = None
self.categories = None
self.centroids = None
def classify(self, texts, categories=None):
"""Classify texts using TF-IDF and clustering"""
# Vectorize the texts
X = self.vectorizer.fit_transform(texts)
self.feature_names = self.vectorizer.get_feature_names_out()
# Auto-detect categories if not provided
if not categories:
num_clusters = min(5, len(texts)) # Don't create more clusters than texts
self.categories = self._generate_default_categories(texts, num_clusters)
else:
self.categories = categories
num_clusters = len(categories)
# Cluster the texts
self.model = KMeans(n_clusters=num_clusters, random_state=42)
clusters = self.model.fit_predict(X)
self.centroids = self.model.cluster_centers_
# Calculate distances to centroids for confidence
distances = self._calculate_distances(X)
# Prepare results
results = []
for i, text in enumerate(texts):
cluster_idx = clusters[i]
# Calculate confidence (inverse of distance, normalized)
confidence = self._calculate_confidence(distances[i])
# Create explanation
explanation = self._generate_explanation(X[i], cluster_idx)
results.append(
{
"category": self.categories[cluster_idx],
"confidence": confidence,
"explanation": explanation,
}
)
return results
def _calculate_distances(self, X):
"""Calculate distances from each point to each centroid"""
return np.sqrt(
(
(X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2
).sum(axis=2)
)
def _calculate_confidence(self, distances):
"""Convert distances to confidence scores (0-100)"""
min_dist = np.min(distances)
max_dist = np.max(distances)
# Normalize and invert (smaller distance = higher confidence)
if max_dist == min_dist:
return 70 # Default mid-range confidence when all distances are equal
normalized_dist = (distances - min_dist) / (max_dist - min_dist)
min_normalized = np.min(normalized_dist)
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
confidence = 100 - (min_normalized * 50)
return round(confidence, 1)
def _generate_explanation(self, text_vector, cluster_idx):
"""Generate an explanation for the classification"""
# Get the most important features for this cluster
centroid = self.centroids[cluster_idx]
# Get indices of top features for this text
text_array = text_vector.toarray()[0]
top_indices = text_array.argsort()[-5:][::-1]
# Get the feature names for these indices
top_features = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
if not top_features:
return "No significant features identified for this classification."
explanation = f"Classification based on key terms: {', '.join(top_features)}"
return explanation
class LLMClassifier(BaseClassifier):
"""Classifier using a Large Language Model for more accurate but slower classification"""
def __init__(self, client, model="gpt-3.5-turbo"):
super().__init__()
self.client = client
self.model = model
def classify(
self, texts: List[str], categories: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Classify texts using an LLM with parallel processing"""
if not categories:
# First, use LLM to generate appropriate categories
categories = self._suggest_categories(texts)
# Process texts in parallel
with ThreadPoolExecutor(max_workers=10) as executor:
# Submit all tasks with their original indices
future_to_index = {
executor.submit(self._classify_text, text, categories): idx
for idx, text in enumerate(texts)
}
# Initialize results list with None values
results = [None] * len(texts)
# Collect results as they complete
for future in as_completed(future_to_index):
original_idx = future_to_index[future]
try:
result = future.result()
results[original_idx] = result
except Exception as e:
print(f"Error processing text: {str(e)}")
results[original_idx] = {
"category": categories[0],
"confidence": 50,
"explanation": f"Error during classification: {str(e)}",
}
return results
def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]:
"""Use LLM to suggest appropriate categories for the dataset"""
# Take a sample of texts to avoid token limitations
if len(texts) > sample_size:
sample_texts = random.sample(texts, sample_size)
else:
sample_texts = texts
prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts))
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
max_tokens=100,
)
# Parse response to get categories
categories_text = response.choices[0].message.content.strip()
categories = [cat.strip() for cat in categories_text.split(",")]
return categories
except Exception as e:
# Fallback to default categories on error
print(f"Error suggesting categories: {str(e)}")
return self._generate_default_categories(texts)
def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]:
"""Use LLM to classify a single text"""
prompt = TEXT_CLASSIFICATION_PROMPT.format(
categories=", ".join(categories), text=text
)
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
max_tokens=200,
)
# Parse JSON response
response_text = response.choices[0].message.content.strip()
result = json.loads(response_text)
# Ensure all required fields are present
if not all(k in result for k in ["category", "confidence", "explanation"]):
raise ValueError("Missing required fields in LLM response")
# Validate category is in the list
if result["category"] not in categories:
result["category"] = categories[
0
] # Default to first category if invalid
# Validate confidence is a number between 0 and 100
try:
result["confidence"] = float(result["confidence"])
if not 0 <= result["confidence"] <= 100:
result["confidence"] = 50
except:
result["confidence"] = 50
return result
except json.JSONDecodeError:
# Fall back to simple parsing if JSON fails
category = categories[0] # Default
for cat in categories:
if cat.lower() in response_text.lower():
category = cat
break
return {
"category": category,
"confidence": 50,
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)",
}