Spaces:
Sleeping
Sleeping
File size: 9,936 Bytes
1bc76b5 ca09c52 a241f5a 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 ca09c52 1bc76b5 6f39808 ca09c52 dc38c9a 6f39808 dc38c9a ca09c52 6f39808 dc38c9a 6f39808 ca09c52 dc38c9a ca09c52 dc38c9a ca09c52 dc38c9a ca09c52 6f39808 dc38c9a 6f39808 1bc76b5 6f39808 ca09c52 1bc76b5 6f39808 a241f5a 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 ca09c52 1bc76b5 a241f5a 6f39808 a241f5a 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
import random
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional
from prompts import CATEGORY_SUGGESTION_PROMPT, TEXT_CLASSIFICATION_PROMPT
class BaseClassifier:
"""Base class for text classifiers"""
def __init__(self):
pass
def classify(self, texts, categories=None):
"""
Classify a list of texts into categories
Args:
texts (list): List of text strings to classify
categories (list, optional): List of category names. If None, categories will be auto-detected
Returns:
list: List of classification results with categories, confidence scores, and explanations
"""
raise NotImplementedError("Subclasses must implement this method")
def _generate_default_categories(self, texts, num_clusters=5):
"""
Generate default categories based on text clustering
Args:
texts (list): List of text strings
num_clusters (int): Number of clusters to generate
Returns:
list: List of category names
"""
# Simple implementation - in real system this would be more sophisticated
default_categories = [f"Category {i+1}" for i in range(num_clusters)]
return default_categories
class TFIDFClassifier(BaseClassifier):
"""Classifier using TF-IDF and clustering for fast classification"""
def __init__(self):
super().__init__()
self.vectorizer = TfidfVectorizer(
max_features=1000, stop_words="english", ngram_range=(1, 2)
)
self.model = None
self.feature_names = None
self.categories = None
self.centroids = None
def classify(self, texts, categories=None):
"""Classify texts using TF-IDF and clustering"""
# Vectorize the texts
X = self.vectorizer.fit_transform(texts)
self.feature_names = self.vectorizer.get_feature_names_out()
# Auto-detect categories if not provided
if not categories:
num_clusters = min(5, len(texts)) # Don't create more clusters than texts
self.categories = self._generate_default_categories(texts, num_clusters)
else:
self.categories = categories
num_clusters = len(categories)
# Cluster the texts
self.model = KMeans(n_clusters=num_clusters, random_state=42)
clusters = self.model.fit_predict(X)
self.centroids = self.model.cluster_centers_
# Calculate distances to centroids for confidence
distances = self._calculate_distances(X)
# Prepare results
results = []
for i, text in enumerate(texts):
cluster_idx = clusters[i]
# Calculate confidence (inverse of distance, normalized)
confidence = self._calculate_confidence(distances[i])
# Create explanation
explanation = self._generate_explanation(X[i], cluster_idx)
results.append(
{
"category": self.categories[cluster_idx],
"confidence": confidence,
"explanation": explanation,
}
)
return results
def _calculate_distances(self, X):
"""Calculate distances from each point to each centroid"""
return np.sqrt(
(
(X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2
).sum(axis=2)
)
def _calculate_confidence(self, distances):
"""Convert distances to confidence scores (0-100)"""
min_dist = np.min(distances)
max_dist = np.max(distances)
# Normalize and invert (smaller distance = higher confidence)
if max_dist == min_dist:
return 70 # Default mid-range confidence when all distances are equal
normalized_dist = (distances - min_dist) / (max_dist - min_dist)
min_normalized = np.min(normalized_dist)
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
confidence = 100 - (min_normalized * 50)
return round(confidence, 1)
def _generate_explanation(self, text_vector, cluster_idx):
"""Generate an explanation for the classification"""
# Get the most important features for this cluster
centroid = self.centroids[cluster_idx]
# Get indices of top features for this text
text_array = text_vector.toarray()[0]
top_indices = text_array.argsort()[-5:][::-1]
# Get the feature names for these indices
top_features = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
if not top_features:
return "No significant features identified for this classification."
explanation = f"Classification based on key terms: {', '.join(top_features)}"
return explanation
class LLMClassifier(BaseClassifier):
"""Classifier using a Large Language Model for more accurate but slower classification"""
def __init__(self, client, model="gpt-3.5-turbo"):
super().__init__()
self.client = client
self.model = model
def classify(
self, texts: List[str], categories: Optional[List[str]] = None
) -> List[Dict[str, Any]]:
"""Classify texts using an LLM with parallel processing"""
if not categories:
# First, use LLM to generate appropriate categories
categories = self._suggest_categories(texts)
# Process texts in parallel
with ThreadPoolExecutor(max_workers=10) as executor:
# Submit all tasks with their original indices
future_to_index = {
executor.submit(self._classify_text, text, categories): idx
for idx, text in enumerate(texts)
}
# Initialize results list with None values
results = [None] * len(texts)
# Collect results as they complete
for future in as_completed(future_to_index):
original_idx = future_to_index[future]
try:
result = future.result()
results[original_idx] = result
except Exception as e:
print(f"Error processing text: {str(e)}")
results[original_idx] = {
"category": categories[0],
"confidence": 50,
"explanation": f"Error during classification: {str(e)}",
}
return results
def _suggest_categories(self, texts: List[str], sample_size: int = 20) -> List[str]:
"""Use LLM to suggest appropriate categories for the dataset"""
# Take a sample of texts to avoid token limitations
if len(texts) > sample_size:
sample_texts = random.sample(texts, sample_size)
else:
sample_texts = texts
prompt = CATEGORY_SUGGESTION_PROMPT.format("\n---\n".join(sample_texts))
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
max_tokens=100,
)
# Parse response to get categories
categories_text = response.choices[0].message.content.strip()
categories = [cat.strip() for cat in categories_text.split(",")]
return categories
except Exception as e:
# Fallback to default categories on error
print(f"Error suggesting categories: {str(e)}")
return self._generate_default_categories(texts)
def _classify_text(self, text: str, categories: List[str]) -> Dict[str, Any]:
"""Use LLM to classify a single text"""
prompt = TEXT_CLASSIFICATION_PROMPT.format(
categories=", ".join(categories), text=text
)
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
max_tokens=200,
)
# Parse JSON response
response_text = response.choices[0].message.content.strip()
result = json.loads(response_text)
# Ensure all required fields are present
if not all(k in result for k in ["category", "confidence", "explanation"]):
raise ValueError("Missing required fields in LLM response")
# Validate category is in the list
if result["category"] not in categories:
result["category"] = categories[
0
] # Default to first category if invalid
# Validate confidence is a number between 0 and 100
try:
result["confidence"] = float(result["confidence"])
if not 0 <= result["confidence"] <= 100:
result["confidence"] = 50
except:
result["confidence"] = 50
return result
except json.JSONDecodeError:
# Fall back to simple parsing if JSON fails
category = categories[0] # Default
for cat in categories:
if cat.lower() in response_text.lower():
category = cat
break
return {
"category": category,
"confidence": 50,
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)",
}
|