File size: 14,142 Bytes
1bc76b5
 
36183d4
d3bdf42
1bc76b5
 
 
 
d3bdf42
1bc76b5
7ca09ea
156898c
36183d4
156898c
 
36183d4
7ca09ea
 
1bc76b5
 
a241f5a
 
 
 
6f39808
a241f5a
1bc76b5
 
6f39808
 
 
1bc76b5
 
 
 
36183d4
1bc76b5
36183d4
 
1bc76b5
36183d4
 
6f39808
1bc76b5
 
 
 
6f39808
1bc76b5
 
 
 
 
6f39808
1bc76b5
 
 
6f39808
1bc76b5
36183d4
 
1bc76b5
6f39808
 
 
 
 
1bc76b5
 
 
6f39808
1bc76b5
 
6f39808
1bc76b5
 
6f39808
1bc76b5
 
6f39808
1bc76b5
 
 
 
 
 
 
 
 
6f39808
1bc76b5
 
 
 
 
6f39808
1bc76b5
 
 
6f39808
 
 
1bc76b5
 
6f39808
 
1bc76b5
 
6f39808
 
1bc76b5
6f39808
1bc76b5
 
 
 
 
 
 
6f39808
1bc76b5
 
1e42e03
6f39808
 
 
 
1bc76b5
6f39808
1bc76b5
 
 
6f39808
1bc76b5
 
 
 
 
 
 
 
6f39808
a2b53c6
 
6f39808
 
 
 
1bc76b5
 
156898c
1bc76b5
6f39808
 
 
 
 
 
 
 
 
 
 
 
 
1bc76b5
 
 
6f39808
1bc76b5
156898c
 
 
 
6f39808
1bc76b5
 
156898c
 
1bc76b5
156898c
6f39808
1bc76b5
6f39808
 
 
 
 
1bc76b5
 
 
6f39808
 
 
1bc76b5
 
 
6f39808
1bc76b5
 
6f39808
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc76b5
 
 
 
 
 
6f39808
1bc76b5
 
 
6f39808
1bc76b5
 
3aa5a3f
1bc76b5
6f39808
 
 
 
 
 
 
1bc76b5
 
 
6f39808
 
 
 
 
 
 
 
1bc76b5
156898c
1bc76b5
6f39808
 
 
 
1bc76b5
 
156898c
6f39808
1bc76b5
156898c
 
 
 
 
 
a241f5a
6f39808
 
 
 
1bc76b5
6f39808
 
 
 
1bc76b5
 
 
 
 
 
6f39808
1bc76b5
 
 
 
 
6f39808
 
1bc76b5
 
 
 
 
 
 
 
6f39808
 
1bc76b5
6f39808
1bc76b5
 
 
6f39808
1bc76b5
6f39808
1bc76b5
 
 
6f39808
1bc76b5
6f39808
1bc76b5
 
 
6f39808
1bc76b5
6f39808
1bc76b5
6f39808
3aa5a3f
36183d4
6f39808
 
 
 
 
 
 
 
1bc76b5
 
 
6f39808
1bc76b5
6f39808
1bc76b5
6f39808
1bc76b5
6f39808
1bc76b5
 
6f39808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc76b5
 
 
6f39808
1bc76b5
6f39808
1bc76b5
 
6f39808
1bc76b5
 
 
6f39808
1bc76b5
 
 
6f39808
1bc76b5
 
 
 
6f39808
1bc76b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import gradio as gr
import asyncio

import json
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

import logging
from dotenv import load_dotenv
from process import update_api_key, process_file_async, export_results, improve_classification
from client import get_client, initialize_client
from utils import load_data, visualize_results, analyze_text_columns, get_sample_texts
from classifiers.llm import LLMClassifier

# Load environment variables from .env file
load_dotenv()

# Import local modules
from prompts import (
    CATEGORY_SUGGESTION_PROMPT,
    ADDITIONAL_CATEGORY_PROMPT,
    VALIDATION_ANALYSIS_PROMPT,
    CATEGORY_IMPROVEMENT_PROMPT,
)

# Configure logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)

# Initialize API key from environment variable
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")

# Initialize client if API key is available
if OPENAI_API_KEY:
    success, message = initialize_client(OPENAI_API_KEY)
    if success:
        logging.info("OpenAI client initialized successfully")
    else:
        logging.error(f"Failed to initialize OpenAI client: {message}")

# Create Gradio interface
with gr.Blocks(title="Text Classification System") as demo:
    gr.Markdown("# Text Classification System")
    gr.Markdown("Upload your data file (Excel/CSV) and classify text using AI")

    with gr.Tab("Setup"):
        api_key_input = gr.Textbox(
            label="OpenAI API Key",
            placeholder="Enter your API key here",
            type="password",
            value=OPENAI_API_KEY,
        )
        api_key_button = gr.Button("Update API Key")
        api_key_message = gr.Textbox(label="Status", interactive=False)

        # Display current API status
        client = get_client()
        api_status = "API Key is set" if client else "No API Key found. Please set one."
        gr.Markdown(f"**Current API Status**: {api_status}")

        api_key_button.click(
            update_api_key, inputs=[api_key_input], outputs=[api_key_message]
        )

    with gr.Tab("Classify Data"):
        with gr.Column():
            file_input = gr.File(label="Upload Excel/CSV File")

            # Variable to store available columns
            available_columns = gr.State([])

            # Button to load file and suggest categories
            load_categories_button = gr.Button("Load File")

            # Display original dataframe
            original_df = gr.Dataframe(
                label="Original Data", interactive=False, visible=False
            )

            with gr.Row():
                with gr.Column():
                    suggested_categories = gr.CheckboxGroup(
                        label="Suggested Categories",
                        choices=[],
                        value=[],
                        interactive=True,
                        visible=False,
                    )

                    new_category = gr.Textbox(
                        label="Add New Category",
                        placeholder="Enter a new category name",
                        visible=False,
                    )
                    with gr.Row():
                        add_category_button = gr.Button("Add Category", visible=False)
                        suggest_category_button = gr.Button(
                            "Suggest Category", visible=False
                        )

                    # Original categories input (hidden)
                    categories = gr.Textbox(visible=False)

                with gr.Column():
                    text_column = gr.CheckboxGroup(
                        label="Select Text Columns",
                        choices=[],
                        interactive=True,
                        visible=False,
                    )

                    classifier_type = gr.Dropdown(
                        choices=[
                            ("TF-IDF (Rapide, <1000 lignes)", "tfidf"),
                            ("LLM GPT-3.5 (Fiable, <1000 lignes)", "gpt35"),
                            ("LLM GPT-4 (Très fiable, <500 lignes)", "gpt4"),
                            ("TF-IDF + LLM (Hybride, >1000 lignes)", "hybrid"),
                        ],
                        label="Modèle de classification",
                        value="gpt35",
                        visible=False,
                    )
                    show_explanations = gr.Checkbox(
                        label="Show Explanations", value=True, visible=False
                    )

                    process_button = gr.Button("Process and Classify", visible=False)

        results_df = gr.Dataframe(interactive=True, visible=False)

        # Create containers for visualization and validation report
        with gr.Row(visible=False) as results_row:
            with gr.Column():
                visualization = gr.Plot(label="Classification Distribution")
                with gr.Row():
                    csv_download = gr.File(label="Download CSV", visible=False)
                    excel_download = gr.File(label="Download Excel", visible=False)
            with gr.Column():
                validation_output = gr.Textbox(
                    label="Validation Report", interactive=True,
                    lines=15
                )
                improve_button = gr.Button(
                    "Improve Classification with Report", visible=False
                )

        # Function to load file and suggest categories
        async def load_file_and_suggest_categories(file):
            if not file:
                return (
                    [],
                    gr.CheckboxGroup(choices=[]),
                    gr.CheckboxGroup(choices=[], visible=False),
                    gr.Textbox(visible=False),
                    gr.Button(visible=False),
                    gr.Button(visible=False),
                    gr.CheckboxGroup(choices=[], visible=False),
                    gr.Dropdown(visible=False),
                    gr.Checkbox(visible=False),
                    gr.Button(visible=False),
                    gr.Dataframe(visible=False),
                )
            try:
                df = load_data(file.name)
                columns = list(df.columns)

                # Analyze columns to suggest text columns
                suggested_text_columns = analyze_text_columns(df)

                # Get sample texts for category suggestion
                sample_texts = get_sample_texts(df, suggested_text_columns)

                # Use LLM to suggest categories
                if client:
                    classifier = LLMClassifier(client=client)
                    suggested_cats = await classifier.suggest_categories_from_texts(sample_texts)
                else:
                    suggested_cats = ["Positive", "Negative", "Neutral", "Mixed", "Other"]

                return (
                    columns,
                    gr.CheckboxGroup(choices=columns, value=suggested_text_columns),
                    gr.CheckboxGroup(
                        choices=suggested_cats, value=suggested_cats, visible=True
                    ),
                    gr.Textbox(visible=True),
                    gr.Button(visible=True),
                    gr.Button(visible=True),
                    gr.CheckboxGroup(
                        choices=columns, value=suggested_text_columns, visible=True
                    ),
                    gr.Dropdown(visible=True),
                    gr.Checkbox(visible=True),
                    gr.Button(visible=True),
                    gr.Dataframe(value=df, visible=True),
                )
            except Exception as e:
                return (
                    [],
                    gr.CheckboxGroup(choices=[]),
                    gr.CheckboxGroup(choices=[], visible=False),
                    gr.Textbox(visible=False),
                    gr.Button(visible=False),
                    gr.Button(visible=False),
                    gr.CheckboxGroup(choices=[], visible=False),
                    gr.Dropdown(visible=False),
                    gr.Checkbox(visible=False),
                    gr.Button(visible=False),
                    gr.Dataframe(visible=False),
                )

        # Function to add a new category
        def add_new_category(current_categories, new_category):
            if not new_category or new_category.strip() == "":
                return current_categories
            new_categories = current_categories + [new_category.strip()]
            return gr.CheckboxGroup(choices=new_categories, value=new_categories)

        # Function to update categories textbox
        def update_categories_textbox(selected_categories):
            return ", ".join(selected_categories)

        # Function to show results after processing
        def show_results(df, validation_report):
            """Show the results after processing"""
            if df is None:
                return (
                    gr.Row(visible=False),
                    gr.File(visible=False),
                    gr.File(visible=False),
                    gr.Dataframe(visible=False),
                )

            # Export to both formats
            csv_path = export_results(df, "csv")
            excel_path = export_results(df, "excel")

            return (
                gr.Row(visible=True),
                gr.File(value=csv_path, visible=True),
                gr.File(value=excel_path, visible=True),
                gr.Dataframe(value=df, visible=True),
            )

        # Function to suggest a new category
        async def suggest_new_category(file, current_categories, text_columns):
            if not file or not text_columns:
                return gr.CheckboxGroup(
                    choices=current_categories, value=current_categories
                )

            try:
                df = load_data(file.name)
                sample_texts = get_sample_texts(df, text_columns)

                if client:
                    classifier = LLMClassifier(client=client)
                    new_categories = await classifier.suggest_categories_from_texts(
                        sample_texts, current_categories
                    )
                    return gr.CheckboxGroup(
                        choices=new_categories, value=new_categories
                    )

                return gr.CheckboxGroup(
                    choices=current_categories, value=current_categories
                )
            except Exception as e:
                return gr.CheckboxGroup(
                    choices=current_categories, value=current_categories
                )

        # Function to handle export and show download button
        def handle_export(df, format_type):
            if df is None:
                return gr.File(visible=False)
            file_path = export_results(df, format_type)
            return gr.File(value=file_path, visible=True)

        # Connect functions
        load_categories_button.click(
            load_file_and_suggest_categories,
            inputs=[file_input],
            outputs=[
                available_columns,
                text_column,
                suggested_categories,
                new_category,
                add_category_button,
                suggest_category_button,
                text_column,
                classifier_type,
                show_explanations,
                process_button,
                original_df,
            ],
        )

        add_category_button.click(
            add_new_category,
            inputs=[suggested_categories, new_category],
            outputs=[suggested_categories],
        )

        suggested_categories.change(
            update_categories_textbox,
            inputs=[suggested_categories],
            outputs=[categories],
        )

        suggest_category_button.click(
            suggest_new_category,
            inputs=[file_input, suggested_categories, text_column],
            outputs=[suggested_categories],
        )

        process_button.click(
            lambda: gr.Dataframe(visible=True), inputs=[], outputs=[results_df]
        ).then(
            process_file_async,
            inputs=[
                file_input,
                text_column,
                categories,
                classifier_type,
                show_explanations,
            ],
            outputs=[results_df, validation_output],
        ).then(
            show_results,
            inputs=[results_df, validation_output],
            outputs=[results_row, csv_download, excel_download, results_df],
        ).then(
            visualize_results, inputs=[results_df, text_column], outputs=[visualization]
        ).then(
            lambda x: gr.Button(visible=True), inputs=[], outputs=[improve_button]
        )

        improve_button.click(
            improve_classification,
            inputs=[
                results_df,
                validation_output,
                text_column,
                categories,
                classifier_type,
                show_explanations,
                file_input,
            ],
            outputs=[
                results_df,
                validation_output,
                improve_button,
                suggested_categories,
            ],
        ).then(
            show_results,
            inputs=[results_df, validation_output],
            outputs=[results_row, csv_download, excel_download, results_df],
        ).then(
            visualize_results, inputs=[results_df, text_column], outputs=[visualization]
        )


def create_example_data():
    """Create example data for demonstration"""
    from utils import create_example_file

    example_path = create_example_file()
    return f"Example file created at: {example_path}"


if __name__ == "__main__":
    # Create examples directory and sample file if it doesn't exist
    if not os.path.exists("examples"):
        create_example_data()

    # Launch the Gradio app
    demo.launch()