Spaces:
Sleeping
Sleeping
File size: 14,142 Bytes
1bc76b5 36183d4 d3bdf42 1bc76b5 d3bdf42 1bc76b5 7ca09ea 156898c 36183d4 156898c 36183d4 7ca09ea 1bc76b5 a241f5a 6f39808 a241f5a 1bc76b5 6f39808 1bc76b5 36183d4 1bc76b5 36183d4 1bc76b5 36183d4 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 36183d4 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 1e42e03 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 a2b53c6 6f39808 1bc76b5 156898c 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 156898c 6f39808 1bc76b5 156898c 1bc76b5 156898c 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 3aa5a3f 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 156898c 1bc76b5 6f39808 1bc76b5 156898c 6f39808 1bc76b5 156898c a241f5a 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 3aa5a3f 36183d4 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 6f39808 1bc76b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import os
import gradio as gr
import asyncio
import json
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import logging
from dotenv import load_dotenv
from process import update_api_key, process_file_async, export_results, improve_classification
from client import get_client, initialize_client
from utils import load_data, visualize_results, analyze_text_columns, get_sample_texts
from classifiers.llm import LLMClassifier
# Load environment variables from .env file
load_dotenv()
# Import local modules
from prompts import (
CATEGORY_SUGGESTION_PROMPT,
ADDITIONAL_CATEGORY_PROMPT,
VALIDATION_ANALYSIS_PROMPT,
CATEGORY_IMPROVEMENT_PROMPT,
)
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
# Initialize API key from environment variable
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
# Initialize client if API key is available
if OPENAI_API_KEY:
success, message = initialize_client(OPENAI_API_KEY)
if success:
logging.info("OpenAI client initialized successfully")
else:
logging.error(f"Failed to initialize OpenAI client: {message}")
# Create Gradio interface
with gr.Blocks(title="Text Classification System") as demo:
gr.Markdown("# Text Classification System")
gr.Markdown("Upload your data file (Excel/CSV) and classify text using AI")
with gr.Tab("Setup"):
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your API key here",
type="password",
value=OPENAI_API_KEY,
)
api_key_button = gr.Button("Update API Key")
api_key_message = gr.Textbox(label="Status", interactive=False)
# Display current API status
client = get_client()
api_status = "API Key is set" if client else "No API Key found. Please set one."
gr.Markdown(f"**Current API Status**: {api_status}")
api_key_button.click(
update_api_key, inputs=[api_key_input], outputs=[api_key_message]
)
with gr.Tab("Classify Data"):
with gr.Column():
file_input = gr.File(label="Upload Excel/CSV File")
# Variable to store available columns
available_columns = gr.State([])
# Button to load file and suggest categories
load_categories_button = gr.Button("Load File")
# Display original dataframe
original_df = gr.Dataframe(
label="Original Data", interactive=False, visible=False
)
with gr.Row():
with gr.Column():
suggested_categories = gr.CheckboxGroup(
label="Suggested Categories",
choices=[],
value=[],
interactive=True,
visible=False,
)
new_category = gr.Textbox(
label="Add New Category",
placeholder="Enter a new category name",
visible=False,
)
with gr.Row():
add_category_button = gr.Button("Add Category", visible=False)
suggest_category_button = gr.Button(
"Suggest Category", visible=False
)
# Original categories input (hidden)
categories = gr.Textbox(visible=False)
with gr.Column():
text_column = gr.CheckboxGroup(
label="Select Text Columns",
choices=[],
interactive=True,
visible=False,
)
classifier_type = gr.Dropdown(
choices=[
("TF-IDF (Rapide, <1000 lignes)", "tfidf"),
("LLM GPT-3.5 (Fiable, <1000 lignes)", "gpt35"),
("LLM GPT-4 (Très fiable, <500 lignes)", "gpt4"),
("TF-IDF + LLM (Hybride, >1000 lignes)", "hybrid"),
],
label="Modèle de classification",
value="gpt35",
visible=False,
)
show_explanations = gr.Checkbox(
label="Show Explanations", value=True, visible=False
)
process_button = gr.Button("Process and Classify", visible=False)
results_df = gr.Dataframe(interactive=True, visible=False)
# Create containers for visualization and validation report
with gr.Row(visible=False) as results_row:
with gr.Column():
visualization = gr.Plot(label="Classification Distribution")
with gr.Row():
csv_download = gr.File(label="Download CSV", visible=False)
excel_download = gr.File(label="Download Excel", visible=False)
with gr.Column():
validation_output = gr.Textbox(
label="Validation Report", interactive=True,
lines=15
)
improve_button = gr.Button(
"Improve Classification with Report", visible=False
)
# Function to load file and suggest categories
async def load_file_and_suggest_categories(file):
if not file:
return (
[],
gr.CheckboxGroup(choices=[]),
gr.CheckboxGroup(choices=[], visible=False),
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
gr.CheckboxGroup(choices=[], visible=False),
gr.Dropdown(visible=False),
gr.Checkbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
)
try:
df = load_data(file.name)
columns = list(df.columns)
# Analyze columns to suggest text columns
suggested_text_columns = analyze_text_columns(df)
# Get sample texts for category suggestion
sample_texts = get_sample_texts(df, suggested_text_columns)
# Use LLM to suggest categories
if client:
classifier = LLMClassifier(client=client)
suggested_cats = await classifier.suggest_categories_from_texts(sample_texts)
else:
suggested_cats = ["Positive", "Negative", "Neutral", "Mixed", "Other"]
return (
columns,
gr.CheckboxGroup(choices=columns, value=suggested_text_columns),
gr.CheckboxGroup(
choices=suggested_cats, value=suggested_cats, visible=True
),
gr.Textbox(visible=True),
gr.Button(visible=True),
gr.Button(visible=True),
gr.CheckboxGroup(
choices=columns, value=suggested_text_columns, visible=True
),
gr.Dropdown(visible=True),
gr.Checkbox(visible=True),
gr.Button(visible=True),
gr.Dataframe(value=df, visible=True),
)
except Exception as e:
return (
[],
gr.CheckboxGroup(choices=[]),
gr.CheckboxGroup(choices=[], visible=False),
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Button(visible=False),
gr.CheckboxGroup(choices=[], visible=False),
gr.Dropdown(visible=False),
gr.Checkbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
)
# Function to add a new category
def add_new_category(current_categories, new_category):
if not new_category or new_category.strip() == "":
return current_categories
new_categories = current_categories + [new_category.strip()]
return gr.CheckboxGroup(choices=new_categories, value=new_categories)
# Function to update categories textbox
def update_categories_textbox(selected_categories):
return ", ".join(selected_categories)
# Function to show results after processing
def show_results(df, validation_report):
"""Show the results after processing"""
if df is None:
return (
gr.Row(visible=False),
gr.File(visible=False),
gr.File(visible=False),
gr.Dataframe(visible=False),
)
# Export to both formats
csv_path = export_results(df, "csv")
excel_path = export_results(df, "excel")
return (
gr.Row(visible=True),
gr.File(value=csv_path, visible=True),
gr.File(value=excel_path, visible=True),
gr.Dataframe(value=df, visible=True),
)
# Function to suggest a new category
async def suggest_new_category(file, current_categories, text_columns):
if not file or not text_columns:
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
try:
df = load_data(file.name)
sample_texts = get_sample_texts(df, text_columns)
if client:
classifier = LLMClassifier(client=client)
new_categories = await classifier.suggest_categories_from_texts(
sample_texts, current_categories
)
return gr.CheckboxGroup(
choices=new_categories, value=new_categories
)
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
except Exception as e:
return gr.CheckboxGroup(
choices=current_categories, value=current_categories
)
# Function to handle export and show download button
def handle_export(df, format_type):
if df is None:
return gr.File(visible=False)
file_path = export_results(df, format_type)
return gr.File(value=file_path, visible=True)
# Connect functions
load_categories_button.click(
load_file_and_suggest_categories,
inputs=[file_input],
outputs=[
available_columns,
text_column,
suggested_categories,
new_category,
add_category_button,
suggest_category_button,
text_column,
classifier_type,
show_explanations,
process_button,
original_df,
],
)
add_category_button.click(
add_new_category,
inputs=[suggested_categories, new_category],
outputs=[suggested_categories],
)
suggested_categories.change(
update_categories_textbox,
inputs=[suggested_categories],
outputs=[categories],
)
suggest_category_button.click(
suggest_new_category,
inputs=[file_input, suggested_categories, text_column],
outputs=[suggested_categories],
)
process_button.click(
lambda: gr.Dataframe(visible=True), inputs=[], outputs=[results_df]
).then(
process_file_async,
inputs=[
file_input,
text_column,
categories,
classifier_type,
show_explanations,
],
outputs=[results_df, validation_output],
).then(
show_results,
inputs=[results_df, validation_output],
outputs=[results_row, csv_download, excel_download, results_df],
).then(
visualize_results, inputs=[results_df, text_column], outputs=[visualization]
).then(
lambda x: gr.Button(visible=True), inputs=[], outputs=[improve_button]
)
improve_button.click(
improve_classification,
inputs=[
results_df,
validation_output,
text_column,
categories,
classifier_type,
show_explanations,
file_input,
],
outputs=[
results_df,
validation_output,
improve_button,
suggested_categories,
],
).then(
show_results,
inputs=[results_df, validation_output],
outputs=[results_row, csv_download, excel_download, results_df],
).then(
visualize_results, inputs=[results_df, text_column], outputs=[visualization]
)
def create_example_data():
"""Create example data for demonstration"""
from utils import create_example_file
example_path = create_example_file()
return f"Example file created at: {example_path}"
if __name__ == "__main__":
# Create examples directory and sample file if it doesn't exist
if not os.path.exists("examples"):
create_example_data()
# Launch the Gradio app
demo.launch()
|