Spaces:
Sleeping
Sleeping
Commit
·
1bc76b5
0
Parent(s):
first commit
Browse files- .gitignore +2 -0
- app.py +586 -0
- classifiers.py +256 -0
- examples/sample_reviews.csv +11 -0
- requirements.txt +9 -0
- utils.py +188 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*.pyc
|
app.py
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from litellm import OpenAI
|
6 |
+
import json
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.cluster import KMeans
|
9 |
+
from sklearn.decomposition import PCA
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import time
|
12 |
+
import torch
|
13 |
+
import traceback
|
14 |
+
import logging
|
15 |
+
|
16 |
+
# Import local modules
|
17 |
+
from classifiers import TFIDFClassifier, LLMClassifier
|
18 |
+
from utils import load_data, export_data, visualize_results, validate_results
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(level=logging.INFO,
|
22 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
23 |
+
|
24 |
+
# Initialize API key from environment variable
|
25 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
|
26 |
+
|
27 |
+
# Only initialize client if API key is available
|
28 |
+
client = None
|
29 |
+
if OPENAI_API_KEY:
|
30 |
+
try:
|
31 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
32 |
+
logging.info("OpenAI client initialized successfully")
|
33 |
+
except Exception as e:
|
34 |
+
logging.error(f"Failed to initialize OpenAI client: {str(e)}")
|
35 |
+
|
36 |
+
def update_api_key(api_key):
|
37 |
+
"""Update the OpenAI API key"""
|
38 |
+
global OPENAI_API_KEY, client
|
39 |
+
|
40 |
+
if not api_key:
|
41 |
+
return "API Key cannot be empty"
|
42 |
+
|
43 |
+
OPENAI_API_KEY = api_key
|
44 |
+
|
45 |
+
try:
|
46 |
+
client = OpenAI(api_key=api_key)
|
47 |
+
# Test the connection with a simple request
|
48 |
+
response = client.chat.completions.create(
|
49 |
+
model="gpt-3.5-turbo",
|
50 |
+
messages=[{"role": "user", "content": "test"}],
|
51 |
+
max_tokens=5
|
52 |
+
)
|
53 |
+
return f"API Key updated and verified successfully"
|
54 |
+
except Exception as e:
|
55 |
+
error_msg = str(e)
|
56 |
+
logging.error(f"API key update failed: {error_msg}")
|
57 |
+
return f"Failed to update API Key: {error_msg}"
|
58 |
+
|
59 |
+
def process_file(file, text_columns, categories, classifier_type, show_explanations):
|
60 |
+
"""Process the uploaded file and classify text data"""
|
61 |
+
try:
|
62 |
+
# Load data from file
|
63 |
+
if isinstance(file, str):
|
64 |
+
df = load_data(file)
|
65 |
+
else:
|
66 |
+
df = load_data(file.name)
|
67 |
+
|
68 |
+
if not text_columns:
|
69 |
+
return None, "Please select at least one text column"
|
70 |
+
|
71 |
+
# Check if all selected columns exist
|
72 |
+
missing_columns = [col for col in text_columns if col not in df.columns]
|
73 |
+
if missing_columns:
|
74 |
+
return None, f"Columns not found in the file: {', '.join(missing_columns)}. Available columns: {', '.join(df.columns)}"
|
75 |
+
|
76 |
+
# Combine text from selected columns
|
77 |
+
texts = []
|
78 |
+
for _, row in df.iterrows():
|
79 |
+
combined_text = " ".join(str(row[col]) for col in text_columns)
|
80 |
+
texts.append(combined_text)
|
81 |
+
|
82 |
+
# Parse categories if provided
|
83 |
+
category_list = []
|
84 |
+
if categories:
|
85 |
+
category_list = [cat.strip() for cat in categories.split(",")]
|
86 |
+
|
87 |
+
# Select classifier based on data size and user choice
|
88 |
+
num_texts = len(texts)
|
89 |
+
|
90 |
+
# If no specific model is chosen, select the most appropriate one
|
91 |
+
if classifier_type == "auto":
|
92 |
+
if num_texts <= 500:
|
93 |
+
classifier_type = "gpt4"
|
94 |
+
elif num_texts <= 1000:
|
95 |
+
classifier_type = "gpt35"
|
96 |
+
elif num_texts <= 5000:
|
97 |
+
classifier_type = "hybrid"
|
98 |
+
else:
|
99 |
+
classifier_type = "tfidf"
|
100 |
+
|
101 |
+
# Initialize appropriate classifier
|
102 |
+
if classifier_type == "tfidf":
|
103 |
+
classifier = TFIDFClassifier()
|
104 |
+
results = classifier.classify(texts, category_list)
|
105 |
+
elif classifier_type == "gpt35":
|
106 |
+
if client is None:
|
107 |
+
return None, "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'."
|
108 |
+
classifier = LLMClassifier(client=client, model="gpt-3.5-turbo")
|
109 |
+
results = classifier.classify(texts, category_list)
|
110 |
+
elif classifier_type == "gpt4":
|
111 |
+
if client is None:
|
112 |
+
return None, "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'."
|
113 |
+
classifier = LLMClassifier(client=client, model="gpt-4")
|
114 |
+
results = classifier.classify(texts, category_list)
|
115 |
+
else: # hybrid
|
116 |
+
if client is None:
|
117 |
+
return None, "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'."
|
118 |
+
# First pass with TF-IDF
|
119 |
+
tfidf_classifier = TFIDFClassifier()
|
120 |
+
tfidf_results = tfidf_classifier.classify(texts, category_list)
|
121 |
+
|
122 |
+
# Second pass with LLM for low confidence results
|
123 |
+
llm_classifier = LLMClassifier(client=client, model="gpt-3.5-turbo")
|
124 |
+
results = []
|
125 |
+
for i, (text, tfidf_result) in enumerate(zip(texts, tfidf_results)):
|
126 |
+
if tfidf_result["confidence"] < 70: # If confidence is below 70%
|
127 |
+
llm_result = llm_classifier.classify([text], category_list)[0]
|
128 |
+
results.append(llm_result)
|
129 |
+
else:
|
130 |
+
results.append(tfidf_result)
|
131 |
+
|
132 |
+
# Create results dataframe
|
133 |
+
result_df = df.copy()
|
134 |
+
result_df["Category"] = [r["category"] for r in results]
|
135 |
+
result_df["Confidence"] = [r["confidence"] for r in results]
|
136 |
+
|
137 |
+
if show_explanations:
|
138 |
+
result_df["Explanation"] = [r["explanation"] for r in results]
|
139 |
+
|
140 |
+
# Validate results using LLM
|
141 |
+
validation_report = validate_results(result_df, text_columns, client)
|
142 |
+
|
143 |
+
return result_df, validation_report
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
error_traceback = traceback.format_exc()
|
147 |
+
return None, f"Error: {str(e)}\n{error_traceback}"
|
148 |
+
|
149 |
+
def export_results(df, format_type):
|
150 |
+
"""Export results to a file and return the file path for download"""
|
151 |
+
if df is None:
|
152 |
+
return None
|
153 |
+
|
154 |
+
# Create a temporary file
|
155 |
+
import tempfile
|
156 |
+
import os
|
157 |
+
|
158 |
+
# Create a temporary directory if it doesn't exist
|
159 |
+
temp_dir = "temp_exports"
|
160 |
+
os.makedirs(temp_dir, exist_ok=True)
|
161 |
+
|
162 |
+
# Generate a unique filename
|
163 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
164 |
+
filename = f"classification_results_{timestamp}"
|
165 |
+
|
166 |
+
if format_type == "excel":
|
167 |
+
file_path = os.path.join(temp_dir, f"{filename}.xlsx")
|
168 |
+
df.to_excel(file_path, index=False)
|
169 |
+
else:
|
170 |
+
file_path = os.path.join(temp_dir, f"{filename}.csv")
|
171 |
+
df.to_csv(file_path, index=False)
|
172 |
+
|
173 |
+
return file_path
|
174 |
+
|
175 |
+
# Create Gradio interface
|
176 |
+
with gr.Blocks(title="Text Classification System") as demo:
|
177 |
+
gr.Markdown("# Text Classification System")
|
178 |
+
gr.Markdown("Upload your data file (Excel/CSV) and classify text using AI")
|
179 |
+
|
180 |
+
with gr.Tab("Setup"):
|
181 |
+
api_key_input = gr.Textbox(
|
182 |
+
label="OpenAI API Key",
|
183 |
+
placeholder="Enter your API key here",
|
184 |
+
type="password",
|
185 |
+
value=OPENAI_API_KEY
|
186 |
+
)
|
187 |
+
api_key_button = gr.Button("Update API Key")
|
188 |
+
api_key_message = gr.Textbox(label="Status", interactive=False)
|
189 |
+
|
190 |
+
# Display current API status
|
191 |
+
api_status = "API Key is set" if OPENAI_API_KEY else "No API Key found. Please set one."
|
192 |
+
gr.Markdown(f"**Current API Status**: {api_status}")
|
193 |
+
|
194 |
+
api_key_button.click(update_api_key, inputs=[api_key_input], outputs=[api_key_message])
|
195 |
+
|
196 |
+
with gr.Tab("Classify Data"):
|
197 |
+
with gr.Column():
|
198 |
+
file_input = gr.File(label="Upload Excel/CSV File")
|
199 |
+
|
200 |
+
# Variable to store available columns
|
201 |
+
available_columns = gr.State([])
|
202 |
+
|
203 |
+
# Button to load file and suggest categories
|
204 |
+
load_categories_button = gr.Button("Load File")
|
205 |
+
|
206 |
+
# Display original dataframe
|
207 |
+
original_df = gr.Dataframe(
|
208 |
+
label="Original Data",
|
209 |
+
interactive=False,
|
210 |
+
visible=False
|
211 |
+
)
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
suggested_categories = gr.CheckboxGroup(
|
216 |
+
label="Suggested Categories",
|
217 |
+
choices=[],
|
218 |
+
value=[],
|
219 |
+
interactive=True,
|
220 |
+
visible=False
|
221 |
+
)
|
222 |
+
|
223 |
+
new_category = gr.Textbox(
|
224 |
+
label="Add New Category",
|
225 |
+
placeholder="Enter a new category name",
|
226 |
+
visible=False
|
227 |
+
)
|
228 |
+
with gr.Row():
|
229 |
+
add_category_button = gr.Button("Add Category", visible=False)
|
230 |
+
suggest_category_button = gr.Button("Suggest Category", visible=False)
|
231 |
+
|
232 |
+
|
233 |
+
# Original categories input (hidden)
|
234 |
+
categories = gr.Textbox(
|
235 |
+
visible=False
|
236 |
+
)
|
237 |
+
|
238 |
+
|
239 |
+
with gr.Column():
|
240 |
+
text_column = gr.CheckboxGroup(
|
241 |
+
label="Select Text Columns",
|
242 |
+
choices=[],
|
243 |
+
interactive=True,
|
244 |
+
visible=False
|
245 |
+
)
|
246 |
+
|
247 |
+
classifier_type = gr.Dropdown(
|
248 |
+
choices=[
|
249 |
+
("TF-IDF (Rapide, <1000 lignes)", "tfidf"),
|
250 |
+
("LLM GPT-3.5 (Fiable, <1000 lignes)", "gpt35"),
|
251 |
+
("LLM GPT-4 (Très fiable, <500 lignes)", "gpt4"),
|
252 |
+
("TF-IDF + LLM (Hybride, >1000 lignes)", "hybrid")
|
253 |
+
],
|
254 |
+
label="Modèle de classification",
|
255 |
+
value="tfidf",
|
256 |
+
visible=False
|
257 |
+
)
|
258 |
+
show_explanations = gr.Checkbox(label="Show Explanations", value=True, visible=False)
|
259 |
+
|
260 |
+
process_button = gr.Button("Process and Classify", visible=False)
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
results_df = gr.Dataframe(interactive=True, visible=False)
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
# Create containers for visualization and validation report
|
269 |
+
with gr.Row(visible=False) as results_row:
|
270 |
+
with gr.Column():
|
271 |
+
visualization = gr.Plot(label="Classification Distribution")
|
272 |
+
with gr.Row():
|
273 |
+
csv_download = gr.File(label="Download CSV", visible=False)
|
274 |
+
excel_download = gr.File(label="Download Excel", visible=False)
|
275 |
+
with gr.Column():
|
276 |
+
validation_output = gr.Textbox(label="Validation Report", interactive=False)
|
277 |
+
improve_button = gr.Button("Improve Classification with Report", visible=False)
|
278 |
+
|
279 |
+
|
280 |
+
# Function to load file and suggest categories
|
281 |
+
def load_file_and_suggest_categories(file):
|
282 |
+
if not file:
|
283 |
+
return [], gr.CheckboxGroup(choices=[]), gr.CheckboxGroup(choices=[], visible=False), gr.Textbox(visible=False), gr.Button(visible=False), gr.Button(visible=False), gr.CheckboxGroup(choices=[], visible=False), gr.Dropdown(visible=False), gr.Checkbox(visible=False), gr.Button(visible=False), gr.Dataframe(visible=False)
|
284 |
+
try:
|
285 |
+
df = load_data(file.name)
|
286 |
+
columns = list(df.columns)
|
287 |
+
|
288 |
+
# Analyze columns to suggest text columns
|
289 |
+
suggested_text_columns = []
|
290 |
+
for col in columns:
|
291 |
+
# Check if column contains text data
|
292 |
+
if df[col].dtype == 'object': # String type
|
293 |
+
# Check if column contains mostly text (not just numbers or dates)
|
294 |
+
sample = df[col].head(100).dropna()
|
295 |
+
if len(sample) > 0:
|
296 |
+
# Check if most values contain spaces (indicating text)
|
297 |
+
text_ratio = sum(' ' in str(val) for val in sample) / len(sample)
|
298 |
+
if text_ratio > 0.3: # If more than 30% of values contain spaces
|
299 |
+
suggested_text_columns.append(col)
|
300 |
+
|
301 |
+
# If no columns were suggested, use all object columns
|
302 |
+
if not suggested_text_columns:
|
303 |
+
suggested_text_columns = [col for col in columns if df[col].dtype == 'object']
|
304 |
+
|
305 |
+
# Get a sample of text for category suggestion
|
306 |
+
sample_texts = []
|
307 |
+
for col in suggested_text_columns:
|
308 |
+
sample_texts.extend(df[col].head(5).tolist())
|
309 |
+
|
310 |
+
# Use LLM to suggest categories
|
311 |
+
if client:
|
312 |
+
prompt = f"""
|
313 |
+
Based on these example texts, suggest 5 appropriate categories for classification:
|
314 |
+
|
315 |
+
{sample_texts[:5]}
|
316 |
+
|
317 |
+
Return your answer as a comma-separated list of category names only.
|
318 |
+
"""
|
319 |
+
try:
|
320 |
+
response = client.chat.completions.create(
|
321 |
+
model="gpt-3.5-turbo",
|
322 |
+
messages=[{"role": "user", "content": prompt}],
|
323 |
+
temperature=0.2,
|
324 |
+
max_tokens=100
|
325 |
+
)
|
326 |
+
suggested_cats = [cat.strip() for cat in response.choices[0].message.content.strip().split(",")]
|
327 |
+
except:
|
328 |
+
suggested_cats = ["Positive", "Negative", "Neutral", "Mixed", "Other"]
|
329 |
+
else:
|
330 |
+
suggested_cats = ["Positive", "Negative", "Neutral", "Mixed", "Other"]
|
331 |
+
|
332 |
+
return (
|
333 |
+
columns,
|
334 |
+
gr.CheckboxGroup(choices=columns, value=suggested_text_columns),
|
335 |
+
gr.CheckboxGroup(choices=suggested_cats, value=suggested_cats, visible=True),
|
336 |
+
gr.Textbox(visible=True),
|
337 |
+
gr.Button(visible=True),
|
338 |
+
gr.Button(visible=True),
|
339 |
+
gr.CheckboxGroup(choices=columns, value=suggested_text_columns, visible=True),
|
340 |
+
gr.Dropdown(visible=True),
|
341 |
+
gr.Checkbox(visible=True),
|
342 |
+
gr.Button(visible=True),
|
343 |
+
gr.Dataframe(value=df, visible=True)
|
344 |
+
)
|
345 |
+
except Exception as e:
|
346 |
+
return [], gr.CheckboxGroup(choices=[]), gr.CheckboxGroup(choices=[], visible=False), gr.Textbox(visible=False), gr.Button(visible=False), gr.Button(visible=False), gr.CheckboxGroup(choices=[], visible=False), gr.Dropdown(visible=False), gr.Checkbox(visible=False), gr.Button(visible=False), gr.Dataframe(visible=False)
|
347 |
+
|
348 |
+
# Function to add a new category
|
349 |
+
def add_new_category(current_categories, new_category):
|
350 |
+
if not new_category or new_category.strip() == "":
|
351 |
+
return current_categories
|
352 |
+
new_categories = current_categories + [new_category.strip()]
|
353 |
+
return gr.CheckboxGroup(choices=new_categories, value=new_categories)
|
354 |
+
|
355 |
+
# Function to update categories textbox
|
356 |
+
def update_categories_textbox(selected_categories):
|
357 |
+
return ", ".join(selected_categories)
|
358 |
+
|
359 |
+
# Function to show results after processing
|
360 |
+
def show_results(df, validation_report):
|
361 |
+
if df is None:
|
362 |
+
return gr.Row(visible=False), gr.File(visible=False), gr.File(visible=False), gr.Dataframe(visible=False)
|
363 |
+
|
364 |
+
# Export to both formats
|
365 |
+
csv_path = export_results(df, "csv")
|
366 |
+
excel_path = export_results(df, "excel")
|
367 |
+
|
368 |
+
return gr.Row(visible=True), gr.File(value=csv_path, visible=True), gr.File(value=excel_path, visible=True), gr.Dataframe(value=df, visible=True)
|
369 |
+
|
370 |
+
# Function to suggest a new category
|
371 |
+
def suggest_new_category(file, current_categories, text_columns):
|
372 |
+
if not file or not text_columns:
|
373 |
+
return gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
374 |
+
|
375 |
+
try:
|
376 |
+
df = load_data(file.name)
|
377 |
+
|
378 |
+
# Get sample texts from selected columns
|
379 |
+
sample_texts = []
|
380 |
+
for col in text_columns:
|
381 |
+
sample_texts.extend(df[col].head(5).tolist())
|
382 |
+
|
383 |
+
if client:
|
384 |
+
prompt = f"""
|
385 |
+
Based on these example texts and the existing categories ({', '.join(current_categories)}),
|
386 |
+
suggest one additional appropriate category for classification.
|
387 |
+
|
388 |
+
Example texts:
|
389 |
+
{sample_texts[:5]}
|
390 |
+
|
391 |
+
Return only the suggested category name, nothing else.
|
392 |
+
"""
|
393 |
+
try:
|
394 |
+
response = client.chat.completions.create(
|
395 |
+
model="gpt-3.5-turbo",
|
396 |
+
messages=[{"role": "user", "content": prompt}],
|
397 |
+
temperature=0.2,
|
398 |
+
max_tokens=50
|
399 |
+
)
|
400 |
+
new_cat = response.choices[0].message.content.strip()
|
401 |
+
if new_cat and new_cat not in current_categories:
|
402 |
+
current_categories.append(new_cat)
|
403 |
+
except:
|
404 |
+
pass
|
405 |
+
|
406 |
+
return gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
407 |
+
except Exception as e:
|
408 |
+
return gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
409 |
+
|
410 |
+
# Function to handle export and show download button
|
411 |
+
def handle_export(df, format_type):
|
412 |
+
if df is None:
|
413 |
+
return gr.File(visible=False)
|
414 |
+
file_path = export_results(df, format_type)
|
415 |
+
return gr.File(value=file_path, visible=True)
|
416 |
+
|
417 |
+
# Function to improve classification based on validation report
|
418 |
+
def improve_classification(df, validation_report, text_columns, categories, classifier_type, show_explanations, file):
|
419 |
+
"""Improve classification based on validation report"""
|
420 |
+
if df is None or not validation_report:
|
421 |
+
return df, validation_report, gr.Button(visible=False), gr.CheckboxGroup(choices=[], value=[])
|
422 |
+
|
423 |
+
try:
|
424 |
+
# Extract insights from validation report
|
425 |
+
if client:
|
426 |
+
prompt = f"""
|
427 |
+
Based on this validation report, analyze the current classification and suggest improvements:
|
428 |
+
|
429 |
+
{validation_report}
|
430 |
+
|
431 |
+
Return your answer in JSON format with these fields:
|
432 |
+
- suggested_categories: list of improved category names (must be different from current categories: {categories})
|
433 |
+
- confidence_threshold: a number between 0 and 100 for minimum confidence
|
434 |
+
- focus_areas: list of specific aspects to focus on during classification
|
435 |
+
- analysis: a brief analysis of what needs improvement
|
436 |
+
- new_categories_needed: boolean indicating if new categories should be added
|
437 |
+
|
438 |
+
JSON response:
|
439 |
+
"""
|
440 |
+
try:
|
441 |
+
response = client.chat.completions.create(
|
442 |
+
model="gpt-4",
|
443 |
+
messages=[{"role": "user", "content": prompt}],
|
444 |
+
temperature=0.2,
|
445 |
+
max_tokens=300
|
446 |
+
)
|
447 |
+
improvements = json.loads(response.choices[0].message.content.strip())
|
448 |
+
|
449 |
+
# Get current categories
|
450 |
+
current_categories = [cat.strip() for cat in categories.split(",")]
|
451 |
+
|
452 |
+
# If new categories are needed, suggest them based on the data
|
453 |
+
if improvements.get("new_categories_needed", False):
|
454 |
+
# Get sample texts for category suggestion
|
455 |
+
sample_texts = []
|
456 |
+
for col in text_columns:
|
457 |
+
if isinstance(file, str):
|
458 |
+
temp_df = load_data(file)
|
459 |
+
else:
|
460 |
+
temp_df = load_data(file.name)
|
461 |
+
sample_texts.extend(temp_df[col].head(5).tolist())
|
462 |
+
|
463 |
+
category_prompt = f"""
|
464 |
+
Based on these example texts and the current categories ({', '.join(current_categories)}),
|
465 |
+
suggest new categories that would improve the classification. The validation report indicates:
|
466 |
+
{improvements.get('analysis', '')}
|
467 |
+
|
468 |
+
Example texts:
|
469 |
+
{sample_texts[:5]}
|
470 |
+
|
471 |
+
Return your answer as a comma-separated list of new category names only.
|
472 |
+
"""
|
473 |
+
|
474 |
+
category_response = client.chat.completions.create(
|
475 |
+
model="gpt-4",
|
476 |
+
messages=[{"role": "user", "content": category_prompt}],
|
477 |
+
temperature=0.2,
|
478 |
+
max_tokens=100
|
479 |
+
)
|
480 |
+
|
481 |
+
new_categories = [cat.strip() for cat in category_response.choices[0].message.content.strip().split(",")]
|
482 |
+
# Combine current and new categories
|
483 |
+
all_categories = current_categories + new_categories
|
484 |
+
categories = ",".join(all_categories)
|
485 |
+
|
486 |
+
# Process with improved parameters
|
487 |
+
improved_df, new_validation = process_file(
|
488 |
+
file,
|
489 |
+
text_columns,
|
490 |
+
categories,
|
491 |
+
classifier_type,
|
492 |
+
show_explanations
|
493 |
+
)
|
494 |
+
|
495 |
+
return improved_df, new_validation, gr.Button(visible=True), gr.CheckboxGroup(choices=all_categories, value=all_categories)
|
496 |
+
except Exception as e:
|
497 |
+
print(f"Error in improvement process: {str(e)}")
|
498 |
+
return df, validation_report, gr.Button(visible=True), gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
499 |
+
else:
|
500 |
+
return df, validation_report, gr.Button(visible=True), gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
501 |
+
except Exception as e:
|
502 |
+
print(f"Error in improvement process: {str(e)}")
|
503 |
+
return df, validation_report, gr.Button(visible=True), gr.CheckboxGroup(choices=current_categories, value=current_categories)
|
504 |
+
|
505 |
+
# Connect functions
|
506 |
+
load_categories_button.click(
|
507 |
+
load_file_and_suggest_categories,
|
508 |
+
inputs=[file_input],
|
509 |
+
outputs=[
|
510 |
+
available_columns,
|
511 |
+
text_column,
|
512 |
+
suggested_categories,
|
513 |
+
new_category,
|
514 |
+
add_category_button,
|
515 |
+
suggest_category_button,
|
516 |
+
text_column,
|
517 |
+
classifier_type,
|
518 |
+
show_explanations,
|
519 |
+
process_button,
|
520 |
+
original_df
|
521 |
+
]
|
522 |
+
)
|
523 |
+
|
524 |
+
add_category_button.click(
|
525 |
+
add_new_category,
|
526 |
+
inputs=[suggested_categories, new_category],
|
527 |
+
outputs=[suggested_categories]
|
528 |
+
)
|
529 |
+
|
530 |
+
suggested_categories.change(
|
531 |
+
update_categories_textbox,
|
532 |
+
inputs=[suggested_categories],
|
533 |
+
outputs=[categories]
|
534 |
+
)
|
535 |
+
|
536 |
+
suggest_category_button.click(
|
537 |
+
suggest_new_category,
|
538 |
+
inputs=[file_input, suggested_categories, text_column],
|
539 |
+
outputs=[suggested_categories]
|
540 |
+
)
|
541 |
+
|
542 |
+
process_button.click(
|
543 |
+
process_file,
|
544 |
+
inputs=[file_input, text_column, categories, classifier_type, show_explanations],
|
545 |
+
outputs=[results_df, validation_output]
|
546 |
+
).then(
|
547 |
+
show_results,
|
548 |
+
inputs=[results_df, validation_output],
|
549 |
+
outputs=[results_row, csv_download, excel_download, results_df]
|
550 |
+
).then(
|
551 |
+
visualize_results,
|
552 |
+
inputs=[results_df, text_column],
|
553 |
+
outputs=[visualization]
|
554 |
+
).then(
|
555 |
+
lambda x: gr.Button(visible=True),
|
556 |
+
inputs=[],
|
557 |
+
outputs=[improve_button]
|
558 |
+
)
|
559 |
+
|
560 |
+
improve_button.click(
|
561 |
+
improve_classification,
|
562 |
+
inputs=[results_df, validation_output, text_column, categories, classifier_type, show_explanations, file_input],
|
563 |
+
outputs=[results_df, validation_output, improve_button, suggested_categories]
|
564 |
+
).then(
|
565 |
+
show_results,
|
566 |
+
inputs=[results_df, validation_output],
|
567 |
+
outputs=[results_row, csv_download, excel_download, results_df]
|
568 |
+
).then(
|
569 |
+
visualize_results,
|
570 |
+
inputs=[results_df, text_column],
|
571 |
+
outputs=[visualization]
|
572 |
+
)
|
573 |
+
|
574 |
+
def create_example_data():
|
575 |
+
"""Create example data for demonstration"""
|
576 |
+
from utils import create_example_file
|
577 |
+
example_path = create_example_file()
|
578 |
+
return f"Example file created at: {example_path}"
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
# Create examples directory and sample file if it doesn't exist
|
582 |
+
if not os.path.exists("examples"):
|
583 |
+
create_example_data()
|
584 |
+
|
585 |
+
# Launch the Gradio app
|
586 |
+
demo.launch()
|
classifiers.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.cluster import KMeans
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import random
|
7 |
+
import json
|
8 |
+
|
9 |
+
class BaseClassifier:
|
10 |
+
"""Base class for text classifiers"""
|
11 |
+
def __init__(self):
|
12 |
+
pass
|
13 |
+
|
14 |
+
def classify(self, texts, categories=None):
|
15 |
+
"""
|
16 |
+
Classify a list of texts into categories
|
17 |
+
|
18 |
+
Args:
|
19 |
+
texts (list): List of text strings to classify
|
20 |
+
categories (list, optional): List of category names. If None, categories will be auto-detected
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
list: List of classification results with categories, confidence scores, and explanations
|
24 |
+
"""
|
25 |
+
raise NotImplementedError("Subclasses must implement this method")
|
26 |
+
|
27 |
+
def _generate_default_categories(self, texts, num_clusters=5):
|
28 |
+
"""
|
29 |
+
Generate default categories based on text clustering
|
30 |
+
|
31 |
+
Args:
|
32 |
+
texts (list): List of text strings
|
33 |
+
num_clusters (int): Number of clusters to generate
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
list: List of category names
|
37 |
+
"""
|
38 |
+
# Simple implementation - in real system this would be more sophisticated
|
39 |
+
default_categories = [f"Category {i+1}" for i in range(num_clusters)]
|
40 |
+
return default_categories
|
41 |
+
|
42 |
+
|
43 |
+
class TFIDFClassifier(BaseClassifier):
|
44 |
+
"""Classifier using TF-IDF and clustering for fast classification"""
|
45 |
+
|
46 |
+
def __init__(self):
|
47 |
+
super().__init__()
|
48 |
+
self.vectorizer = TfidfVectorizer(
|
49 |
+
max_features=1000,
|
50 |
+
stop_words='english',
|
51 |
+
ngram_range=(1, 2)
|
52 |
+
)
|
53 |
+
self.model = None
|
54 |
+
self.feature_names = None
|
55 |
+
self.categories = None
|
56 |
+
self.centroids = None
|
57 |
+
|
58 |
+
def classify(self, texts, categories=None):
|
59 |
+
"""Classify texts using TF-IDF and clustering"""
|
60 |
+
# Vectorize the texts
|
61 |
+
X = self.vectorizer.fit_transform(texts)
|
62 |
+
self.feature_names = self.vectorizer.get_feature_names_out()
|
63 |
+
|
64 |
+
# Auto-detect categories if not provided
|
65 |
+
if not categories:
|
66 |
+
num_clusters = min(5, len(texts)) # Don't create more clusters than texts
|
67 |
+
self.categories = self._generate_default_categories(texts, num_clusters)
|
68 |
+
else:
|
69 |
+
self.categories = categories
|
70 |
+
num_clusters = len(categories)
|
71 |
+
|
72 |
+
# Cluster the texts
|
73 |
+
self.model = KMeans(n_clusters=num_clusters, random_state=42)
|
74 |
+
clusters = self.model.fit_predict(X)
|
75 |
+
self.centroids = self.model.cluster_centers_
|
76 |
+
|
77 |
+
# Calculate distances to centroids for confidence
|
78 |
+
distances = self._calculate_distances(X)
|
79 |
+
|
80 |
+
# Prepare results
|
81 |
+
results = []
|
82 |
+
for i, text in enumerate(texts):
|
83 |
+
cluster_idx = clusters[i]
|
84 |
+
|
85 |
+
# Calculate confidence (inverse of distance, normalized)
|
86 |
+
confidence = self._calculate_confidence(distances[i])
|
87 |
+
|
88 |
+
# Create explanation
|
89 |
+
explanation = self._generate_explanation(X[i], cluster_idx)
|
90 |
+
|
91 |
+
results.append({
|
92 |
+
"category": self.categories[cluster_idx],
|
93 |
+
"confidence": confidence,
|
94 |
+
"explanation": explanation
|
95 |
+
})
|
96 |
+
|
97 |
+
return results
|
98 |
+
|
99 |
+
def _calculate_distances(self, X):
|
100 |
+
"""Calculate distances from each point to each centroid"""
|
101 |
+
return np.sqrt(((X.toarray()[:, np.newaxis, :] - self.centroids[np.newaxis, :, :]) ** 2).sum(axis=2))
|
102 |
+
|
103 |
+
def _calculate_confidence(self, distances):
|
104 |
+
"""Convert distances to confidence scores (0-100)"""
|
105 |
+
min_dist = np.min(distances)
|
106 |
+
max_dist = np.max(distances)
|
107 |
+
|
108 |
+
# Normalize and invert (smaller distance = higher confidence)
|
109 |
+
if max_dist == min_dist:
|
110 |
+
return 70 # Default mid-range confidence when all distances are equal
|
111 |
+
|
112 |
+
normalized_dist = (distances - min_dist) / (max_dist - min_dist)
|
113 |
+
min_normalized = np.min(normalized_dist)
|
114 |
+
|
115 |
+
# Invert and scale to 50-100 range (TF-IDF is never 100% confident)
|
116 |
+
confidence = 100 - (min_normalized * 50)
|
117 |
+
return round(confidence, 1)
|
118 |
+
|
119 |
+
def _generate_explanation(self, text_vector, cluster_idx):
|
120 |
+
"""Generate an explanation for the classification"""
|
121 |
+
# Get the most important features for this cluster
|
122 |
+
centroid = self.centroids[cluster_idx]
|
123 |
+
|
124 |
+
# Get indices of top features for this text
|
125 |
+
text_array = text_vector.toarray()[0]
|
126 |
+
top_indices = text_array.argsort()[-5:][::-1]
|
127 |
+
|
128 |
+
# Get the feature names for these indices
|
129 |
+
top_features = [self.feature_names[i] for i in top_indices if text_array[i] > 0]
|
130 |
+
|
131 |
+
if not top_features:
|
132 |
+
return "No significant features identified for this classification."
|
133 |
+
|
134 |
+
explanation = f"Classification based on key terms: {', '.join(top_features)}"
|
135 |
+
return explanation
|
136 |
+
|
137 |
+
|
138 |
+
class LLMClassifier(BaseClassifier):
|
139 |
+
"""Classifier using a Large Language Model for more accurate but slower classification"""
|
140 |
+
|
141 |
+
def __init__(self, client, model="gpt-3.5-turbo"):
|
142 |
+
super().__init__()
|
143 |
+
self.client = client
|
144 |
+
self.model = model
|
145 |
+
|
146 |
+
def classify(self, texts, categories=None):
|
147 |
+
"""Classify texts using an LLM"""
|
148 |
+
if not categories:
|
149 |
+
# First, use LLM to generate appropriate categories
|
150 |
+
categories = self._suggest_categories(texts)
|
151 |
+
|
152 |
+
results = []
|
153 |
+
for text in texts:
|
154 |
+
# Classify each text individually
|
155 |
+
result = self._classify_text(text, categories)
|
156 |
+
results.append(result)
|
157 |
+
|
158 |
+
return results
|
159 |
+
|
160 |
+
def _suggest_categories(self, texts, sample_size=20):
|
161 |
+
"""Use LLM to suggest appropriate categories for the dataset"""
|
162 |
+
# Take a sample of texts to avoid token limitations
|
163 |
+
if len(texts) > sample_size:
|
164 |
+
sample_texts = random.sample(texts, sample_size)
|
165 |
+
else:
|
166 |
+
sample_texts = texts
|
167 |
+
|
168 |
+
prompt = """
|
169 |
+
I have a collection of texts that I need to classify into categories. Here are some examples:
|
170 |
+
|
171 |
+
{}
|
172 |
+
|
173 |
+
Based on these examples, suggest up 2 to 5 appropriate categories for classification.
|
174 |
+
Return your answer as a comma-separated list of category names only.
|
175 |
+
""".format("\n---\n".join(sample_texts))
|
176 |
+
|
177 |
+
try:
|
178 |
+
response = self.client.chat.completions.create(
|
179 |
+
model=self.model,
|
180 |
+
messages=[{"role": "user", "content": prompt}],
|
181 |
+
temperature=0.2,
|
182 |
+
max_tokens=100
|
183 |
+
)
|
184 |
+
|
185 |
+
# Parse response to get categories
|
186 |
+
categories_text = response.choices[0].message.content.strip()
|
187 |
+
categories = [cat.strip() for cat in categories_text.split(",")]
|
188 |
+
|
189 |
+
return categories
|
190 |
+
except Exception as e:
|
191 |
+
# Fallback to default categories on error
|
192 |
+
print(f"Error suggesting categories: {str(e)}")
|
193 |
+
return self._generate_default_categories(texts)
|
194 |
+
|
195 |
+
def _classify_text(self, text, categories):
|
196 |
+
"""Use LLM to classify a single text"""
|
197 |
+
categories_str = ", ".join(categories)
|
198 |
+
|
199 |
+
prompt = f"""
|
200 |
+
Classify the following text into one of these categories: {categories_str}
|
201 |
+
|
202 |
+
Text: {text}
|
203 |
+
|
204 |
+
Return your answer in JSON format with these fields:
|
205 |
+
- category: the chosen category from the list
|
206 |
+
- confidence: a value between 0 and 100 indicating your confidence in this classification (as a percentage)
|
207 |
+
- explanation: a brief explanation of why this category was chosen (1-2 sentences)
|
208 |
+
|
209 |
+
JSON response:
|
210 |
+
"""
|
211 |
+
|
212 |
+
try:
|
213 |
+
response = self.client.chat.completions.create(
|
214 |
+
model=self.model,
|
215 |
+
messages=[{"role": "user", "content": prompt}],
|
216 |
+
temperature=0,
|
217 |
+
max_tokens=200
|
218 |
+
)
|
219 |
+
|
220 |
+
# Parse JSON response
|
221 |
+
response_text = response.choices[0].message.content.strip()
|
222 |
+
|
223 |
+
result = json.loads(response_text)
|
224 |
+
# Ensure all required fields are present
|
225 |
+
if not all(k in result for k in ["category", "confidence", "explanation"]):
|
226 |
+
raise ValueError("Missing required fields in LLM response")
|
227 |
+
|
228 |
+
# Validate category is in the list
|
229 |
+
if result["category"] not in categories:
|
230 |
+
result["category"] = categories[0] # Default to first category if invalid
|
231 |
+
|
232 |
+
# Validate confidence is a number between 0 and 100
|
233 |
+
try:
|
234 |
+
result["confidence"] = float(result["confidence"])
|
235 |
+
if not 0 <= result["confidence"] <= 100:
|
236 |
+
result["confidence"] = 50
|
237 |
+
except:
|
238 |
+
result["confidence"] = 50
|
239 |
+
|
240 |
+
return result
|
241 |
+
except json.JSONDecodeError:
|
242 |
+
# Fall back to simple parsing if JSON fails
|
243 |
+
category = categories[0] # Default
|
244 |
+
for cat in categories:
|
245 |
+
if cat.lower() in response_text.lower():
|
246 |
+
category = cat
|
247 |
+
break
|
248 |
+
|
249 |
+
return {
|
250 |
+
"category": category,
|
251 |
+
"confidence": 50,
|
252 |
+
"explanation": f"Classification based on language model analysis. (Note: Structured response parsing failed)"
|
253 |
+
}
|
254 |
+
|
255 |
+
|
256 |
+
|
examples/sample_reviews.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
"I absolutely love this product! It exceeded all my expectations."
|
3 |
+
"The service was terrible and the staff was rude."
|
4 |
+
"The product arrived on time but was slightly damaged."
|
5 |
+
"I have mixed feelings about this. Some features are great, others not so much."
|
6 |
+
"This is a complete waste of money. Do not buy!"
|
7 |
+
"The customer service team was very helpful in resolving my issue."
|
8 |
+
"It's okay, nothing special but gets the job done."
|
9 |
+
"I'm extremely disappointed with the quality of this product."
|
10 |
+
"This is the best purchase I've made all year!"
|
11 |
+
"It's reasonably priced and works as expected."
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
litellm>=1.10.0
|
3 |
+
pandas>=2.0.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
scikit-learn>=1.2.0
|
6 |
+
openpyxl>=3.1.0
|
7 |
+
torch>=2.0.0
|
8 |
+
transformers>=4.30.0
|
9 |
+
matplotlib>=3.7.0
|
utils.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
def load_data(file_path):
|
10 |
+
"""
|
11 |
+
Load data from an Excel or CSV file
|
12 |
+
|
13 |
+
Args:
|
14 |
+
file_path (str): Path to the file
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
pd.DataFrame: Loaded data
|
18 |
+
"""
|
19 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
20 |
+
|
21 |
+
if file_ext == '.xlsx' or file_ext == '.xls':
|
22 |
+
return pd.read_excel(file_path)
|
23 |
+
elif file_ext == '.csv':
|
24 |
+
return pd.read_csv(file_path)
|
25 |
+
else:
|
26 |
+
raise ValueError(f"Unsupported file format: {file_ext}. Please upload an Excel or CSV file.")
|
27 |
+
|
28 |
+
def export_data(df, file_name, format_type="excel"):
|
29 |
+
"""
|
30 |
+
Export dataframe to file
|
31 |
+
|
32 |
+
Args:
|
33 |
+
df (pd.DataFrame): Dataframe to export
|
34 |
+
file_name (str): Name of the output file
|
35 |
+
format_type (str): "excel" or "csv"
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
str: Path to the exported file
|
39 |
+
"""
|
40 |
+
# Create export directory if it doesn't exist
|
41 |
+
export_dir = "exports"
|
42 |
+
os.makedirs(export_dir, exist_ok=True)
|
43 |
+
|
44 |
+
# Full path for the export file
|
45 |
+
export_path = os.path.join(export_dir, file_name)
|
46 |
+
|
47 |
+
# Export based on format type
|
48 |
+
if format_type == "excel":
|
49 |
+
df.to_excel(export_path, index=False)
|
50 |
+
else:
|
51 |
+
df.to_csv(export_path, index=False)
|
52 |
+
|
53 |
+
return export_path
|
54 |
+
|
55 |
+
def visualize_results(df, text_column, category_column="Category"):
|
56 |
+
"""
|
57 |
+
Create visualization of classification results
|
58 |
+
|
59 |
+
Args:
|
60 |
+
df (pd.DataFrame): Dataframe with classification results
|
61 |
+
text_column (str): Name of the column containing text data
|
62 |
+
category_column (str): Name of the column containing categories
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
matplotlib.figure.Figure: Visualization figure
|
66 |
+
"""
|
67 |
+
# Get categories and their counts
|
68 |
+
category_counts = df[category_column].value_counts()
|
69 |
+
|
70 |
+
# Create a new figure
|
71 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
72 |
+
|
73 |
+
# Create the histogram
|
74 |
+
bars = ax.bar(category_counts.index, category_counts.values)
|
75 |
+
|
76 |
+
# Add value labels on top of each bar
|
77 |
+
for bar in bars:
|
78 |
+
height = bar.get_height()
|
79 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
80 |
+
f'{int(height)}',
|
81 |
+
ha='center', va='bottom')
|
82 |
+
|
83 |
+
# Customize the plot
|
84 |
+
ax.set_xlabel('Categories')
|
85 |
+
ax.set_ylabel('Number of Texts')
|
86 |
+
ax.set_title('Distribution of Classified Texts')
|
87 |
+
|
88 |
+
# Rotate x-axis labels if they're too long
|
89 |
+
plt.xticks(rotation=45, ha='right')
|
90 |
+
|
91 |
+
# Add grid
|
92 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
93 |
+
|
94 |
+
plt.tight_layout()
|
95 |
+
|
96 |
+
return fig
|
97 |
+
|
98 |
+
def validate_results(df, text_columns, client):
|
99 |
+
"""
|
100 |
+
Use LLM to validate the classification results
|
101 |
+
|
102 |
+
Args:
|
103 |
+
df (pd.DataFrame): Dataframe with classification results
|
104 |
+
text_columns (list): List of column names containing text data
|
105 |
+
client: LiteLLM client
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
str: Validation report
|
109 |
+
"""
|
110 |
+
try:
|
111 |
+
# Sample a few rows for validation
|
112 |
+
sample_size = min(5, len(df))
|
113 |
+
sample_df = df.sample(n=sample_size, random_state=42)
|
114 |
+
|
115 |
+
# Build validation prompt
|
116 |
+
validation_prompts = []
|
117 |
+
for _, row in sample_df.iterrows():
|
118 |
+
# Combine text from all selected columns
|
119 |
+
text = " ".join(str(row[col]) for col in text_columns)
|
120 |
+
assigned_category = row["Category"]
|
121 |
+
confidence = row["Confidence"]
|
122 |
+
|
123 |
+
validation_prompts.append(
|
124 |
+
f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n"
|
125 |
+
)
|
126 |
+
|
127 |
+
prompt = """
|
128 |
+
As a validation expert, review the following text classifications and provide feedback.
|
129 |
+
For each text, assess whether the assigned category seems appropriate:
|
130 |
+
|
131 |
+
{}
|
132 |
+
|
133 |
+
Provide a brief validation report with:
|
134 |
+
1. Overall accuracy assessment (0-100%)
|
135 |
+
2. Any potential misclassifications identified
|
136 |
+
3. Suggestions for improvement
|
137 |
+
|
138 |
+
Keep your response under 300 words.
|
139 |
+
""".format("\n---\n".join(validation_prompts))
|
140 |
+
|
141 |
+
# Call LLM API
|
142 |
+
response = client.chat.completions.create(
|
143 |
+
model="gpt-3.5-turbo",
|
144 |
+
messages=[{"role": "user", "content": prompt}],
|
145 |
+
temperature=0.3,
|
146 |
+
max_tokens=400
|
147 |
+
)
|
148 |
+
|
149 |
+
validation_report = response.choices[0].message.content.strip()
|
150 |
+
return validation_report
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
return f"Validation failed: {str(e)}"
|
154 |
+
|
155 |
+
|
156 |
+
def create_example_file():
|
157 |
+
"""
|
158 |
+
Create an example CSV file for testing
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
str: Path to the created file
|
162 |
+
"""
|
163 |
+
# Create some example data
|
164 |
+
data = {
|
165 |
+
"text": [
|
166 |
+
"I absolutely love this product! It exceeded all my expectations.",
|
167 |
+
"The service was terrible and the staff was rude.",
|
168 |
+
"The product arrived on time but was slightly damaged.",
|
169 |
+
"I have mixed feelings about this. Some features are great, others not so much.",
|
170 |
+
"This is a complete waste of money. Do not buy!",
|
171 |
+
"The customer service team was very helpful in resolving my issue.",
|
172 |
+
"It's okay, nothing special but gets the job done.",
|
173 |
+
"I'm extremely disappointed with the quality of this product.",
|
174 |
+
"This is the best purchase I've made all year!",
|
175 |
+
"It's reasonably priced and works as expected."
|
176 |
+
]
|
177 |
+
}
|
178 |
+
|
179 |
+
# Create dataframe
|
180 |
+
df = pd.DataFrame(data)
|
181 |
+
|
182 |
+
# Save to a CSV file
|
183 |
+
example_dir = "examples"
|
184 |
+
os.makedirs(example_dir, exist_ok=True)
|
185 |
+
file_path = os.path.join(example_dir, "sample_reviews.csv")
|
186 |
+
df.to_csv(file_path, index=False)
|
187 |
+
|
188 |
+
return file_path
|