File size: 3,682 Bytes
35d6846
 
93c305a
35d6846
93c305a
35d6846
 
 
93c305a
 
 
 
 
 
 
 
 
35d6846
93c305a
 
 
35d6846
 
 
a9f93ea
111a3cd
 
35d6846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f028eb9
 
 
35d6846
 
 
 
 
 
97d09e9
35d6846
97d09e9
35d6846
97d09e9
cdb7645
35d6846
93c305a
35d6846
 
d2d7e87
93c305a
cdb7645
97d09e9
1a17233
35d6846
97d09e9
93c305a
 
35d6846
 
cdb7645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import gradio as gr
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel
from diffusers.utils import export_to_gif, load_image
from transformers import pipeline

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 한글-영어 번역 모델 로드
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def translate_korean_to_english(text):
    if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
        translated = translator(text)[0]['translation_text']
        return translated
    return text

def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
    prompt = translate_korean_to_english(prompt)
    negative_prompt = translate_korean_to_english(negative_prompt)

    motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
    controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
    vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
    
    pipe = AnimateDiffPipeline.from_pretrained(
        "SG161222/Realistic_Vision_V6.0_B1_noVAE",
        motion_adapter=motion_adapter,
        controlnet=controlnet,
        vae=vae,
        torch_dtype=torch.float16,
    ).to(device)
    
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True)
    
    image_files = [
        "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
        "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
        "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
    ]
    conditioning_frames = [load_image(img_file) for img_file in image_files]

    conditioning_frame_indices = eval(conditioning_frame_indices)
    controlnet_conditioning_scale = float(controlnet_conditioning_scale)

    video = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        conditioning_frames=conditioning_frames,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        controlnet_frame_indices=conditioning_frame_indices,
        generator=torch.Generator().manual_seed(1337),
    ).frames[0]
    
    export_to_gif(video, "output.gif")
    return "output.gif"

demo = gr.Interface(
    fn=generate_video,
    inputs=[
        gr.Textbox(label="Prompt (한글 또는 영어)", value="카페에서 커피 마시는 아름다운 프랑스 여성, 걸작, 고품질"),
        gr.Textbox(label="Negative Prompt (한글 또는 영어)", value="저품질, 최악의 품질, 레터박스"),
        gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100),
        gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
        gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0)
    ],
    outputs=gr.Image(label="Generated Video"),
    title="AnimateDiffSparseControlNetPipeline을 사용한 비디오 생성",
    description="AnimateDiffSparseControlNetPipeline을 사용하여 비디오를 생성합니다. 한글 또는 영어로 프롬프트를 입력할 수 있습니다."
)

demo.launch()