seawolf2357 commited on
Commit
111a3cd
·
verified ·
1 Parent(s): 3a8aec0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import torch
2
  import gradio as gr
3
- from diffusers import AnimateDiffSparseControlNetPipeline, AutoencoderKL, MotionAdapter, SparseControlNetModel, AnimateDiffPipeline, EulerAncestralDiscreteScheduler
4
- from diffusers.schedulers import DPMSolverMultistepScheduler
5
  from diffusers.utils import export_to_gif, load_image
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -11,8 +10,8 @@ def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_fr
11
  controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
12
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
13
 
14
- pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
15
- "SG161222/Realistic_Vision_V5.1_noVAE",
16
  motion_adapter=motion_adapter,
17
  controlnet=controlnet,
18
  vae=vae,
@@ -59,10 +58,10 @@ def generate_simple_video(prompt):
59
 
60
  frames = pipe(
61
  prompt,
62
- num_frames=64,
63
- num_inference_steps=50, # Increased for higher quality
64
- guidance_scale=10.0, # Increased for stronger guidance
65
- decode_chunk_size=1, # Reduced for finer details
66
  ).frames[0]
67
 
68
  export_to_gif(frames, "simple_output.gif")
@@ -73,7 +72,7 @@ demo1 = gr.Interface(
73
  inputs=[
74
  gr.Textbox(label="Prompt", value="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"),
75
  gr.Textbox(label="Negative Prompt", value="low quality, worst quality, letterboxed"),
76
- gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=50), # Increased default value
77
  gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
78
  gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0)
79
  ],
@@ -92,5 +91,6 @@ demo2 = gr.Interface(
92
 
93
  demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
94
 
 
95
  demo.launch()
96
  #demo.launch(server_name="0.0.0.0", server_port=7910)
 
1
  import torch
2
  import gradio as gr
3
+ from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, EulerAncestralDiscreteScheduler
 
4
  from diffusers.utils import export_to_gif, load_image
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
10
  controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
11
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to(device)
12
 
13
+ pipe = AnimateDiffPipeline.from_pretrained(
14
+ "SG161222/Realistic_Vision_V6.0_B1_noVAE",
15
  motion_adapter=motion_adapter,
16
  controlnet=controlnet,
17
  vae=vae,
 
58
 
59
  frames = pipe(
60
  prompt,
61
+ num_frames=128, # Increased for smoother video
62
+ num_inference_steps=100, # Increased for higher quality
63
+ guidance_scale=15.0, # Increased for stronger guidance
64
+ decode_chunk_size=1,
65
  ).frames[0]
66
 
67
  export_to_gif(frames, "simple_output.gif")
 
72
  inputs=[
73
  gr.Textbox(label="Prompt", value="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"),
74
  gr.Textbox(label="Negative Prompt", value="low quality, worst quality, letterboxed"),
75
+ gr.Slider(label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=100), # Increased default value
76
  gr.Textbox(label="Conditioning Frame Indices", value="[0, 8, 15]"),
77
  gr.Slider(label="ControlNet Conditioning Scale", minimum=0.1, maximum=2.0, step=0.1, value=1.0)
78
  ],
 
91
 
92
  demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
93
 
94
+
95
  demo.launch()
96
  #demo.launch(server_name="0.0.0.0", server_port=7910)