|
import argparse |
|
import tarfile |
|
from itertools import repeat |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
from tarfile import TarFile |
|
from zipfile import ZipFile |
|
|
|
import torch |
|
from mmengine.utils.path import mkdir_or_exist |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Download datasets for training') |
|
parser.add_argument( |
|
'--dataset-name', type=str, help='dataset name', default='coco2017') |
|
parser.add_argument( |
|
'--save-dir', |
|
type=str, |
|
help='the dir to save dataset', |
|
default='data/coco') |
|
parser.add_argument( |
|
'--unzip', |
|
action='store_true', |
|
help='whether unzip dataset or not, zipped files will be saved') |
|
parser.add_argument( |
|
'--delete', |
|
action='store_true', |
|
help='delete the download zipped files') |
|
parser.add_argument( |
|
'--threads', type=int, help='number of threading', default=4) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def download(url, dir, unzip=True, delete=False, threads=1): |
|
|
|
def download_one(url, dir): |
|
f = dir / Path(url).name |
|
if Path(url).is_file(): |
|
Path(url).rename(f) |
|
elif not f.exists(): |
|
print(f'Downloading {url} to {f}') |
|
torch.hub.download_url_to_file(url, f, progress=True) |
|
if unzip and f.suffix in ('.zip', '.tar'): |
|
print(f'Unzipping {f.name}') |
|
if f.suffix == '.zip': |
|
ZipFile(f).extractall(path=dir) |
|
elif f.suffix == '.tar': |
|
TarFile(f).extractall(path=dir) |
|
if delete: |
|
f.unlink() |
|
print(f'Delete {f}') |
|
|
|
dir = Path(dir) |
|
if threads > 1: |
|
pool = ThreadPool(threads) |
|
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) |
|
pool.close() |
|
pool.join() |
|
else: |
|
for u in [url] if isinstance(url, (str, Path)) else url: |
|
download_one(u, dir) |
|
|
|
|
|
def download_objects365v2(url, dir, unzip=True, delete=False, threads=1): |
|
|
|
def download_single(url, dir): |
|
|
|
if 'train' in url: |
|
saving_dir = dir / Path('train_zip') |
|
mkdir_or_exist(saving_dir) |
|
f = saving_dir / Path(url).name |
|
|
|
unzip_dir = dir / Path('train') |
|
mkdir_or_exist(unzip_dir) |
|
elif 'val' in url: |
|
saving_dir = dir / Path('val') |
|
mkdir_or_exist(saving_dir) |
|
f = saving_dir / Path(url).name |
|
|
|
unzip_dir = dir / Path('val') |
|
mkdir_or_exist(unzip_dir) |
|
else: |
|
raise NotImplementedError |
|
|
|
if Path(url).is_file(): |
|
Path(url).rename(f) |
|
elif not f.exists(): |
|
print(f'Downloading {url} to {f}') |
|
torch.hub.download_url_to_file(url, f, progress=True) |
|
|
|
if unzip and str(f).endswith('.tar.gz'): |
|
print(f'Unzipping {f.name}') |
|
tar = tarfile.open(f) |
|
tar.extractall(path=unzip_dir) |
|
if delete: |
|
f.unlink() |
|
print(f'Delete {f}') |
|
|
|
|
|
full_url = [] |
|
for _url in url: |
|
if 'zhiyuan_objv2_train.tar.gz' in _url or \ |
|
'zhiyuan_objv2_val.json' in _url: |
|
full_url.append(_url) |
|
elif 'train' in _url: |
|
for i in range(51): |
|
full_url.append(f'{_url}patch{i}.tar.gz') |
|
elif 'val/images/v1' in _url: |
|
for i in range(16): |
|
full_url.append(f'{_url}patch{i}.tar.gz') |
|
elif 'val/images/v2' in _url: |
|
for i in range(16, 44): |
|
full_url.append(f'{_url}patch{i}.tar.gz') |
|
else: |
|
raise NotImplementedError |
|
|
|
dir = Path(dir) |
|
if threads > 1: |
|
pool = ThreadPool(threads) |
|
pool.imap(lambda x: download_single(*x), zip(full_url, repeat(dir))) |
|
pool.close() |
|
pool.join() |
|
else: |
|
for u in full_url: |
|
download_single(u, dir) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
path = Path(args.save_dir) |
|
if not path.exists(): |
|
path.mkdir(parents=True, exist_ok=True) |
|
data2url = dict( |
|
|
|
coco2017=[ |
|
'http://images.cocodataset.org/zips/train2017.zip', |
|
'http://images.cocodataset.org/zips/val2017.zip', |
|
'http://images.cocodataset.org/zips/test2017.zip', |
|
'http://images.cocodataset.org/zips/unlabeled2017.zip', |
|
'http://images.cocodataset.org/annotations/annotations_trainval2017.zip', |
|
'http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip', |
|
'http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip', |
|
'http://images.cocodataset.org/annotations/image_info_test2017.zip', |
|
'http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip', |
|
], |
|
lvis=[ |
|
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', |
|
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', |
|
], |
|
voc2007=[ |
|
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', |
|
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', |
|
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar', |
|
], |
|
|
|
|
|
|
|
objects365v2=[ |
|
|
|
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/zhiyuan_objv2_train.tar.gz', |
|
|
|
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/zhiyuan_objv2_val.json', |
|
|
|
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/', |
|
|
|
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v1/', |
|
|
|
'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v2/' |
|
]) |
|
url = data2url.get(args.dataset_name, None) |
|
if url is None: |
|
print('Only support COCO, VOC, LVIS, and Objects365v2 now!') |
|
return |
|
if args.dataset_name == 'objects365v2': |
|
download_objects365v2( |
|
url, |
|
dir=path, |
|
unzip=args.unzip, |
|
delete=args.delete, |
|
threads=args.threads) |
|
else: |
|
download( |
|
url, |
|
dir=path, |
|
unzip=args.unzip, |
|
delete=args.delete, |
|
threads=args.threads) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|