|
|
|
import base64 |
|
import os |
|
|
|
import mmcv |
|
import numpy as np |
|
import torch |
|
from ts.torch_handler.base_handler import BaseHandler |
|
|
|
from mmdet.apis import inference_detector, init_detector |
|
|
|
|
|
class MMdetHandler(BaseHandler): |
|
threshold = 0.5 |
|
|
|
def initialize(self, context): |
|
properties = context.system_properties |
|
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = torch.device(self.map_location + ':' + |
|
str(properties.get('gpu_id')) if torch.cuda. |
|
is_available() else self.map_location) |
|
self.manifest = context.manifest |
|
|
|
model_dir = properties.get('model_dir') |
|
serialized_file = self.manifest['model']['serializedFile'] |
|
checkpoint = os.path.join(model_dir, serialized_file) |
|
self.config_file = os.path.join(model_dir, 'config.py') |
|
|
|
self.model = init_detector(self.config_file, checkpoint, self.device) |
|
self.initialized = True |
|
|
|
def preprocess(self, data): |
|
images = [] |
|
|
|
for row in data: |
|
image = row.get('data') or row.get('body') |
|
if isinstance(image, str): |
|
image = base64.b64decode(image) |
|
image = mmcv.imfrombytes(image) |
|
images.append(image) |
|
|
|
return images |
|
|
|
def inference(self, data, *args, **kwargs): |
|
results = inference_detector(self.model, data) |
|
return results |
|
|
|
def postprocess(self, data): |
|
|
|
output = [] |
|
for data_sample in data: |
|
pred_instances = data_sample.pred_instances |
|
bboxes = pred_instances.bboxes.cpu().numpy().astype( |
|
np.float32).tolist() |
|
labels = pred_instances.labels.cpu().numpy().astype( |
|
np.int32).tolist() |
|
scores = pred_instances.scores.cpu().numpy().astype( |
|
np.float32).tolist() |
|
preds = [] |
|
for idx in range(len(labels)): |
|
cls_score, bbox, cls_label = scores[idx], bboxes[idx], labels[ |
|
idx] |
|
if cls_score >= self.threshold: |
|
class_name = self.model.dataset_meta['classes'][cls_label] |
|
result = dict( |
|
class_label=cls_label, |
|
class_name=class_name, |
|
bbox=bbox, |
|
score=cls_score) |
|
preds.append(result) |
|
output.append(preds) |
|
return output |
|
|