|
|
|
import argparse |
|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
import os.path as osp |
|
import warnings |
|
from copy import deepcopy |
|
|
|
from mmengine import ConfigDict |
|
from mmengine.config import Config, DictAction |
|
from mmengine.runner import Runner |
|
|
|
from mmdet.engine.hooks.utils import trigger_visualization_hook |
|
from mmdet.evaluation import DumpDetResults |
|
from mmdet.registry import RUNNERS |
|
from mmdet.utils import setup_cache_size_limit_of_dynamo |
|
|
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='MMDet test (and eval) a model') |
|
parser.add_argument('--config', default='./configs/specdetr_sb-2s-100e_hsi.py', |
|
help='test config file path') |
|
parser.add_argument('--checkpoint', |
|
default='./work_dirs/SpecDETR/SpecDETR_100e.pth', |
|
help='checkpoint file') |
|
parser.add_argument( |
|
'--work-dir',default='./work_dirs/SpecDETR/', |
|
help='the directory to save the file containing evaluation metrics') |
|
parser.add_argument( |
|
'--out', |
|
type=str,default='./work_dirs/SpecDETR/result.pkl', |
|
help='dump predictions to a pickle file for offline evaluation') |
|
parser.add_argument( |
|
'--show', action='store_true', help='show prediction results') |
|
parser.add_argument( |
|
'--show-dir', |
|
help='directory where painted images will be saved. ' |
|
'If specified, it will be automatically saved ' |
|
'to the work_dir/timestamp/show_dir') |
|
parser.add_argument( |
|
'--wait-time', type=float, default=2, help='the interval of show (s)') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--tta', action='store_true') |
|
|
|
|
|
|
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
|
|
setup_cache_size_limit_of_dynamo() |
|
|
|
|
|
cfg = Config.fromfile(args.config) |
|
cfg.launcher = args.launcher |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
cfg.work_dir = args.work_dir |
|
elif cfg.get('work_dir', None) is None: |
|
|
|
cfg.work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0]) |
|
|
|
cfg.load_from = args.checkpoint |
|
|
|
if args.show or args.show_dir: |
|
cfg = trigger_visualization_hook(cfg, args) |
|
|
|
if args.tta: |
|
|
|
if 'tta_model' not in cfg: |
|
warnings.warn('Cannot find ``tta_model`` in config, ' |
|
'we will set it as default.') |
|
cfg.tta_model = dict( |
|
type='DetTTAModel', |
|
tta_cfg=dict( |
|
nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) |
|
if 'tta_pipeline' not in cfg: |
|
warnings.warn('Cannot find ``tta_pipeline`` in config, ' |
|
'we will set it as default.') |
|
test_data_cfg = cfg.test_dataloader.dataset |
|
while 'dataset' in test_data_cfg: |
|
test_data_cfg = test_data_cfg['dataset'] |
|
cfg.tta_pipeline = deepcopy(test_data_cfg.pipeline) |
|
flip_tta = dict( |
|
type='TestTimeAug', |
|
transforms=[ |
|
[ |
|
dict(type='RandomFlip', prob=1.), |
|
dict(type='RandomFlip', prob=0.) |
|
], |
|
[ |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', |
|
'img_shape', 'scale_factor', 'flip', |
|
'flip_direction')) |
|
], |
|
]) |
|
cfg.tta_pipeline[-1] = flip_tta |
|
cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model) |
|
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline |
|
|
|
|
|
if 'runner_type' not in cfg: |
|
|
|
runner = Runner.from_cfg(cfg) |
|
else: |
|
|
|
|
|
runner = RUNNERS.build(cfg) |
|
|
|
|
|
if args.out is not None: |
|
assert args.out.endswith(('.pkl', '.pickle')), \ |
|
'The dump file must be a pkl file.' |
|
runner.test_evaluator.metrics.append( |
|
DumpDetResults(out_file_path=args.out)) |
|
|
|
|
|
runner.test() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|