|
|
|
import torch |
|
|
|
|
|
def split_batch(img, img_metas, kwargs): |
|
"""Split data_batch by tags. |
|
|
|
Code is modified from |
|
<https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/structure_utils.py> # noqa: E501 |
|
|
|
Args: |
|
img (Tensor): of shape (N, C, H, W) encoding input images. |
|
Typically these should be mean centered and std scaled. |
|
img_metas (list[dict]): List of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys, see |
|
:class:`mmdet.datasets.pipelines.Collect`. |
|
kwargs (dict): Specific to concrete implementation. |
|
|
|
Returns: |
|
data_groups (dict): a dict that data_batch splited by tags, |
|
such as 'sup', 'unsup_teacher', and 'unsup_student'. |
|
""" |
|
|
|
|
|
def fuse_list(obj_list, obj): |
|
return torch.stack(obj_list) if isinstance(obj, |
|
torch.Tensor) else obj_list |
|
|
|
|
|
def select_group(data_batch, current_tag): |
|
group_flag = [tag == current_tag for tag in data_batch['tag']] |
|
return { |
|
k: fuse_list([vv for vv, gf in zip(v, group_flag) if gf], v) |
|
for k, v in data_batch.items() |
|
} |
|
|
|
kwargs.update({'img': img, 'img_metas': img_metas}) |
|
kwargs.update({'tag': [meta['tag'] for meta in img_metas]}) |
|
tags = list(set(kwargs['tag'])) |
|
data_groups = {tag: select_group(kwargs, tag) for tag in tags} |
|
for tag, group in data_groups.items(): |
|
group.pop('tag') |
|
return data_groups |
|
|